Автор работы: Пользователь скрыл имя, 24 Декабря 2013 в 03:28, реферат
Целью данного пособия является развитие умений и навыков перевода текстов с немецкого языка на русский язык. Для достижения поставленной цели в данном пособии имеется краткое изложение грамматических особенностей немецких текстов и варианты перевода грамматических и лексических форм.
УПП состоит из уроков, в каждый из которых включены грамматические правила, задания, упражнения, тексты, словарь и тесты для самоконтроля.
1. Введение…………………………………………………………..2
2. Виды общения …………………………………………………....4
3. Виды речевой деятельности и их особенности………………....5
4. Общая характеристика форм речи……………………………….6
5. Устная форма речи………………………………………………...8
6. Письменная форма речи………………………………………….12
7. Взаимодействие устной и письменной речи……………………14
8. Заключение………………………………………………………..16
9. Список литературы……………………………………………….18
3 | Cl20 +2 =2Cl–.
Молекулярное уравнение реакции:
2Au + 2HNO3 + 8HCl = 2H[AuCl4] + 4H2O + 2NO.
Максимальная степень
| W – 6 = W+6,
3 | Cl2 +2 =2Cl–1.
Уравнение реакции имеет вид
W + 3Cl2 = WCl6.
Пример 5.
Через подкисленный серной кислотой раствор дихромата калия пропустили газообразный сероводород. Через некоторое время оранжевая окраска перешла в зеленую и одновременно жидкость стала мутной. Составьте молекулярное и электронное уравнения происходящей реакции, учитывая минимальное окисление сероводорода.
Решение.
Оранжевая окраска исходного раствора обусловлена ионами Cr2O72–. Зеленый цвет после пропускания сероводорода сообщают ионы Cr3+.
Следовательно, хром (+6) восстанавливается до хрома (+3). В сероводороде степень окисления серы равна (–2). Минимальное окисление сероводорода означает, что сера (–2) отдает минимальное число электронов и приобретает степень окисления, равную нулю. Составим электронные уравнения:
2 | Cr+6 + 3 = Cr+3,
3 | S–2 – 2 =S0.
На основании электронных уравнений составим молекулярное уравнение реакции:
K2Cr2O7 + 4H2SO4 + 3H2S = 3S¯ + Cr2(SO4)3 + K2SO4 + 7H2O.
Пример 6.
На гидроксиды хрома (III) и никеля (II) подействовали избытком раствора серной кислоты, едкого натрия и аммиака. Какие соединения хрома и никеля образуются в каждом из этих случаев? Составьте молекулярные и ионные уравнения реакций.
Решение.
Гидроксид хрома (III) Cr(OH)3 является амфотерным основанием. Поэтому он взаимодействует и с кислотами, и с гидроксидами:
2Cr(OH)3 + 3H2SO4 = Cr2(SO4)3 + 6H2O,
2Cr(OH)3 + 6H+ = 2Cr3+ + 6H2O.
Cr(OH)3 + 3NaOH = Na3[Cr(OH)6],
Cr(OH)3 + 3OH– = [Cr(OH)6]3–.
Cr(OH)3 + 6NH4OH = [Cr(NH3)6](OH)3 + 6H2O,
Cr(OH)3 + 6NH4OH = [Cr(NH3)6]3+ + 3OH– + 6H2O.
Гидроксид никеля (II) обладает только основными свойствами и с едким натрием не взаимодействует. В серной кислоте и аммиаке он растворяется с образованием комплексных соединений:
Ni(OH)2 + H2SO4 + 4H2O = [Ni(H2O)6]SO4,
Ni(OH)2 + 2H+ + 4H2O = [Ni(H2O)6]2+.
Ni(OH)2 + 6NH4OH = [Ni(NH3)6](OH)2 + 6H2O,
Ni(OH)2 + 6NH4OH = [Ni(NH3)6]2+ + 6H2O + 2OH–.
Пример 7.
Как получить берлинскую лазурь, имея в качестве исходных веществ железный купорос, азотную кислоту и цианистый калий? Напишите молекулярное и ионные уравнения реакций, приводящих к образованию берлинской лазури из указанных веществ.
Решение.
В состав берлинской лазури Fe4[Fe(CN)6]3 входит железо в степени окисления (+2) и (+3).
Последовательность операций.
Делим железный купорос FeSO4 на две части, к первой прибавляем избыток раствора цианистого калия:
FeSO4 + 6KCN = K4[Fe(CN)6] + K2SO4,
Fe2+ + 6CN– = [Fe(CN)6]4–.
Ко второй части приливаем раствор азотной кислоты для окисления железа от (+2) до (+3):
3FeSO4 + 4HNO3 = 3FeNO3SO4 + NO + 2H2O,
3Fe2+ + 4NO3– = 3Fe3+ + NO + 2H2O.
Слив оба раствора, получим нерастворимый в воде осадок берлинской лазури:
4FeNO3SO4 + 3K4[Fe(CN)6] = Fe4[Fe(CN)6]3 + 4KNO3 + 4K2SO4,
4Fe3+ + 3[Fe(CN)6]4– = Fe4[Fe(CN)6]3.
Пример 8.
Составьте молекулярные и ионные уравнения реакций, которые необходимо провести для осуществления следующих превращений:
Co(OH)2 ® Co(OH)3 ® CoCl2 ® CoOHCl.
Решение.
Окисление гидроксида кобальта (II) гипохлоритом натрия:
2Co(OH)2 + NaClO + H2O = Co(OH)3 + NaCl,
2Co(OH)2 + ClO– + H2O = Co(OH)3 + Cl–.
При действии кислот на Co(OH)3 получаются соли кобальта (II), а не кобальта (III):
2Co(OH)3 + 6HCl = 2CoCl2 + Cl2 + 6H2O,
2Co(OH)3 +6H+ + 2Cl– = 2Co2+ + Cl2 + 6H2O.
При действии щелочи на раствор соли кобальта (II) при комнатной температуре выпадает осадок основной соли:
CoCl2 + NaOH = CoOHCl¯ +NaCl,
Co2+ + Cl– + OH– = CoOHCl.
Пример 9.
Могут ли в растворе существовать совместно следующие вещества: FeCl2 и KMnO4; NiCl2 и NaOH; FeCl2 и K4[Fe(CN)6]? Составьте уравнения реакций.
Решение.
Указанные пары могут существовать совместно, если между ними не будут протекать окислительно-восстановительные реакции или реакции обмена.
Степень окисления железа в FeCl2, равная (+2), – промежуточная, а марганца в KMnO4, равная (+7), – высшая. Следовательно, эти вещества будут взаимодействовать, причем KMnO4 – окислитель, а FeCl2 – восстановитель.
Напишем реакции:
3FeCl2 + KMnO4 + 2H2O = 3FeOHCl2 + MnO2 +KOH,
3Fe2+ + MnO4– + 2H2O = 3Fe3+ + MnO2.
Раствор хлорида никеля содержит только ионы Ni2+ и Cl–. Гидроксид натрия также полностью диссоциирует в растворе на ионы Na+ и OH–. При смешивании растворов NiCl2 и NaOH ионы Ni2+ и OH– связываются друг с другом и образуют нерастворимый в воде гидроксид никеля (II):
NiCl2 + 2NaOH = Ni(OH)2 + 2NaCl,
Ni2+ + 2OH– = Ni(OH)2¯.
В водном растворе FeCl2 и K4[Fe(CN)6] диссоциируют по уравнениям:
FeCl2 D Fe2+ + 2Cl–,
K4[Fe(CN)6] ® 4K+ + [Fe(CN)6]4–.
При смешивании растворов никакие комбинации ионов Fe2+, K+, Cl–, [Fe(CN)6]4– не приводят к образованию малорастворимого, летучего или слабо-диссоциирующего вещества. Следовательно, никакой реакции не происходит.
Итак, в растворе могут существовать совместно только FeCl2 и K4[Fe(CN)6].
Пример 10.
Металлическая ртуть часто содержит примеси так называемых “неблагородных” металлов – цинка, олова, свинца. Для их удаления ртуть взбалтывают в насыщенном растворе сульфата ртути. На чем основан такой способ очистки ртути? Выразите происходящие реакции уравнениями.
Решение.
Цинк, олово и свинец стоят в ряду напряжений левее ртути. Поэтому они вытесняют ртуть из растворов ее солей. Составим молекулярные и ионные уравнения протекающих реакций:
Zn + HgSO4 = ZnSO4 + Hg,
Zn + Hg2+ = Zn2+ + Hg.
Sn + HgSO4 = SnSO4 + Hg,
Sn + Hg2+ = Sn2+ + Hg.
Pb + HgSO4 = PbSO4 + Hg,
Pb + Hg2+ = Pb2+ + Hg.
Задания
391. Серебро не взаимодействует с разбавленной серной кислотой, тогда как в концентрированной оно растворяется. Чем это можно объяснить? Составьте электронные и молекулярное уравнения соответствующей реакции.
392. Составьте уравнения реакций, которые надо провести для осуществления следующих превращений: Сu ® Cu(NO3)2 ® Сu(ОН)2 ® CuCl2 ® [Cu(NH3)4]CI2.
393. Составьте электронные и
394. Составьте уравнения реакций, которые надо провести для осуществления следующих превращений: Ag ® AgNO3 ® AgCl ® [Ag(NH3)2]CI ® AgCl:
395. При постепенном прибавлении раствора KJ к раствору AgNO3 образующийся вначале осадок растворяется. Какое комплексное соединение при этом получается? Составьте молекулярные и ионно-молекулярные уравнения соответствующих реакций.
396. При постепенном прибавлении раствора аммиака к раствору сульфата кадмия образующийся вначале осадок основной соли растворяется. Составьте молекулярные и ионно-молекулярные уравнения соответствующих реакций.
397. При сливании растворов
398. К какому классу соединений относятся вещества, полученные при действии избытка гидроксида натрия на растворы ZnCl2, CdCl2, HgCl2? Составьте молекулярные и электронные уравнения соответствующих реакций.
3S9. При действии на титан концентрированной хлороводородной (соляной) кислотой образуется трихлорид титана, а при действии азотной – осадок метатитановой кислоты. Составьте электронные и молекулярные уравнения соответствующих реакций.
400. При растворении титана в концентрированной серной кислоте последняя восстанавливается минимально, а титан переходит в катион с максимальной степенью окисления. Составьте электронные и молекулярное уравнения реакции.
401. Какую степень окисления
402. Диоксиды титана и циркония
при сплавлении
403. На гидроксиды цинка и кадмия
подействовали избытком
404. Золото растворяется в царской водке и в селеновой кислоте, приобретая при этом максимальную степень окисления. Составьте электронные и молекулярные уравнения соответствующих реакций.
405. В присутствии влаги и
406. Кусок латуни обработали
407. Ванадий получают
408. Азотная кислота окисляет
ванадий до метаванадиевой
409. Какую степень окисления проявляет ванадий в соединениях? Составьте формулы оксидов ванадия, отвечающих этим степеням окисления. Как меняются кислотно-основные свойства оксидов ванадия при переходе от низшей к высшей степени окисления. Составьте уравнения реакций: a) V2O3 с H2SО4; б) V2O5 с NaOH.
410. При внесении цинка в
411. Хромит калия окисляется
412. Составьте электронные и молекулярные уравнения реакций: а) растворения молибдена в азотной кислоте; б) растворения вольфрама в щелочи в присутствии кислорода. Учтите, что молибден и вольфрам приобретают высшую степень окисления.
413. При сплавлении хромита железа Fe(CrO2)2 с карбонатом натрия в присутствии кислорода хром (+3) и железо (+2) окисляются и приобретают соответственно степени окисления (+6) и (+3). Составьте электронные и молекулярное уравнения реакции.
414. К подкисленному серной
415. Хром получают методом
416. Составьте уравнения реакций, которые надо провести для осуществления превращений: Na2Cr2O7 ® Na2CrO4 ® Na2Cr2O7 ® СгС1з. Уравнение окислительно-восстановительной реакции напишите на основании электронных уравнений.
417. Марганец азотной кислотой окисляется минимально, а рений максимально. Какие соединения при этом получаются? Составьте электронные и молекулярные уравнения соответствующих реакций.