Автор работы: Пользователь скрыл имя, 19 Сентября 2013 в 22:00, курсовая работа
Главной отличительной особенностью кристаллических твердых тел является периодическое расположение в пространстве их атомов, образующих пространственную трехмерную кристаллическую решетку. С периодическим расположением атомов связана и естественная огранка кристаллов. Анизотропное расположение атомов в кристаллической решетке объясняет анизотропию многих физических свойств твердых тел широко используемую в технике. Тепловые свойства кристалла вытекают из анализа колебаний его кристаллической решетки. Рассмотрение движения электронов в периодическом потенциале кристаллической решетки объясняет электрические свойства кристаллов. На атомах кристаллической решетки наблюдается дифракция всех частиц, движущихся внутри кристалла или попавших в него извне: электронов, фотонов, нейтронов.
ВВЕДЕНИЕ
ГЛАВА 1. Кристаллическая решетка
1.1. Описание структуры кристаллов
1.2. Физические механизмы образования кристаллов
1.3. Дифракция излучения и частиц на кристаллической решетке
ГЛАВА 2. Дефекты кристаллической решетки
2.1. Точечные дефекты
2.2. Линейные дефекты - дислокации
2.3. Поверхностные и объемные дефекты
ГЛАВА 3. Тепловые свойства кристаллов
3.1. Методы экспериментального изучения фононов
3.2. Колебания атомов в кристаллической решетке
3.3. Теплоемкость кристаллов
3.4. Ангармоническое приближение
ГЛАВА 4. Электрические свойства кристаллов
4.1. Электронные состояния в твердых телах
4.2. Диэлектрики полупроводники и проводники
4.3. Электропроводность проводников
4.4. Электропроводность полупроводников
4.5. Полупроводниковый p-n- переход
ГЛАВА 5. Магнитные свойства твердых тел
5.1. Природа магнитного упорядочения
5.2. Типы магнитного упорядочения
5.3. Температура Кюри. Теория среднего поля
5.4. Спиновые волны и магнитный вклад в теплоемкость
5.5. Домены, механизмы перемагничивания и магнитные свойства
ЗАКЛЮЧЕНИЕ
При увеличении температуры
значительная часть электронов
с малого числа донорных
Можно показать [1, 2, 3], что уровень Ферми в донорном полупроводнике смещается вверх по шкале энергии, причем это смещение больше при низких температурах, когда концентрация свободных электронов значительно превышает число дырок. При повышении температуры, когда донорный характер полупроводника становится все менее и менее выраженным, уровень Ферми смещается в среднюю часть запрещенной зоны, как в беспримесном полупроводнике.
Акцепторные полупроводники
- получаются при добавлении в
полупроводник элементов,
На языке зонной теории переход электрона из полноценной ковалентной связи в связь с недостающим электроном соответствует появлению в запрещенной зоне акцепторных уровней вблизи нижнего края зоны проводимости (см. рис. 4.17). Электрону для такого перехода из валентной зоны на акцепторный уровень (при этом электрон просто переходит из одной ковалентной связи в почти такую же другую связь) требуется меньше энергии, чем для перехода из валентной зоны в зону проводимости (см. рис. 4.17), то есть для "полного ухода" электрона из ковалентной связи.
Рис. 4.17.
Схема электронных состояний
При температурах
порядка комнатной основной
При увеличении температуры
значительная часть малого
Можно показать [1, 2, 3],
что уровень Ферми в
Итак, при постепенном
увеличении температуры
Фотопроводимость
Это явление очень
важно для физики, так как позволяет
определить две важных характер
Ширину запрещенной
зоны вычисляют по найденной
экспериментально красной
Среднее время жизни
носителей в полупроводнике
Рис. 4.18.
Зависимость равновесной концентрации носителей заряда и связанной с ней проводимости от освещения полупроводника
При освещении полупроводника
будут нарождаться пары
Явление фотопроводимости
полупроводников очень важно
для техники, так как
В настоящее время
полупроводниковые датчики
Устройства чтения
компакт-дисков измеряют с
Полупроводниковые датчики
используются и для измерения
интенсивности ионизирующих
Следует заметить, что увеличение температуры, освещенности и радиационного облучения полупроводника приводят к увеличению его проводимости. Поэтому при использовании полупроводниковых датчиков для измерения одной из трех перечисленных величин стремятся уменьшить или хотя бы стабилизировать влияние двух других. Например, полупроводниковые датчики - измерители температуры тщательно защищают от света и радиации. Чувствительные полупроводниковые датчики светового и инфракрасного излучения охлаждают до температуры порядка 200 К, а иногда и ниже, чтобы уменьшить влияние проводимости, обусловленной тепловым возбуждением электронов и тем самым увеличить чувствительность к слабым потокам излучения. Если такой датчик не охлаждать, то малое число носителей заряда, образовавшееся в нем из-за воздействия излучения, будет незаметным на фоне большого числа носителей заряда, образовавшихся при тепловом движении.
Эффект Холла в
полупроводниках. Рассмотрим
Рис. 4.19.
Появление поверхностных зарядов и холловской напряженности электрического поля в акцепторном полупроводнике
Рассмотрим сначала акцепторный полупроводник. С плотностью тока связана дрейфовая скорость движения дырок - носителей заряда. На заряд , движущийся в магнитном поле, как известно из электродинамики, действует сила Лоренца , направленная на рис. 4.19 вверх:
(4.29)
Дырки под воздействием начнут двигаться вверх и накапливаться на верхней грани, на верхней грани будет формироваться избыток положительного заряда, а на нижней - избыток отрицательного заряда. Эти заряды создадут электрическое поле , которое препятствует движению дырок вверх, действуя на них силой . Когда заряда накопится столько, что сила уравновесит силу Лоренца, процесс накопления заряда прекратится и установится величина , отвечающая данным значениям и . Условие равновесия примет вид: . Заменив в этом соотношении на из (4.28), получим более удобное для проведения экспериментов соотношение:
. (4.30)
Все величины, входящие
в эту формулу, могут быть
измерены. Величина называется постоянной
Холла. Аналогичную формулу
Использование соотношения
(4.30) позволяет сравнительно легко
измерять такие важные
В технике эффект Холла используется для измерения величины магнитной индукции . Для этого конструируют датчик - образец полупроводника подобный изображенному на рис. 4.19. Измеряют величины и ; затем, зная постоянную материала датчика, вычисляют величину . Процесс измерения легко может быть автоматизирован, и прибор сразу будет выдавать значение .
Рассмотрим теперь
эффект Холла в случае
Рис. 4.20.
Появление холловской напряженности электрического поля и поверхностных зарядов в полупроводнике с сопоставимыми концентрациями электронов и дырок
Вектор плотности тока, создаваемого электронами и дырками под воздействием электрического поля , пусть направлен вдоль стороны и задается согласно (4.28) выражением:
(4.31)
Вдоль стороны
от нас направлен вектор магнит
. (4.32)
С учетом (4.27) и (4.28),
получим соотношение для
. (4.33)
Из этого соотношения можно найти отношение как:
. (4.34)
Из него можно, используя (4.29) и (4.30), выразить значение :