Автор работы: Пользователь скрыл имя, 19 Сентября 2013 в 22:00, курсовая работа
Главной отличительной особенностью кристаллических твердых тел является периодическое расположение в пространстве их атомов, образующих пространственную трехмерную кристаллическую решетку. С периодическим расположением атомов связана и естественная огранка кристаллов. Анизотропное расположение атомов в кристаллической решетке объясняет анизотропию многих физических свойств твердых тел широко используемую в технике. Тепловые свойства кристалла вытекают из анализа колебаний его кристаллической решетки. Рассмотрение движения электронов в периодическом потенциале кристаллической решетки объясняет электрические свойства кристаллов. На атомах кристаллической решетки наблюдается дифракция всех частиц, движущихся внутри кристалла или попавших в него извне: электронов, фотонов, нейтронов.
ВВЕДЕНИЕ
ГЛАВА 1. Кристаллическая решетка
1.1. Описание структуры кристаллов
1.2. Физические механизмы образования кристаллов
1.3. Дифракция излучения и частиц на кристаллической решетке
ГЛАВА 2. Дефекты кристаллической решетки
2.1. Точечные дефекты
2.2. Линейные дефекты - дислокации
2.3. Поверхностные и объемные дефекты
ГЛАВА 3. Тепловые свойства кристаллов
3.1. Методы экспериментального изучения фононов
3.2. Колебания атомов в кристаллической решетке
3.3. Теплоемкость кристаллов
3.4. Ангармоническое приближение
ГЛАВА 4. Электрические свойства кристаллов
4.1. Электронные состояния в твердых телах
4.2. Диэлектрики полупроводники и проводники
4.3. Электропроводность проводников
4.4. Электропроводность полупроводников
4.5. Полупроводниковый p-n- переход
ГЛАВА 5. Магнитные свойства твердых тел
5.1. Природа магнитного упорядочения
5.2. Типы магнитного упорядочения
5.3. Температура Кюри. Теория среднего поля
5.4. Спиновые волны и магнитный вклад в теплоемкость
5.5. Домены, механизмы перемагничивания и магнитные свойства
ЗАКЛЮЧЕНИЕ
Подход к вычислению энергии колебаний кристалла. Как отмечалось выше, вычисление спектра частот нормальных колебаний является слишком сложной задачей. Поэтому при вычислении энергии колебаний атомов в кристалле обычно используют различные упрощения. Чаще всего разрешенные значения волновых векторов фононов вычисляют по той же схеме как это делалось в теории Ферми-газа или же при выводе распределения Планка (см. том 5), а именно, рассматривают кубический кристалл с характерным размером . Затем, волновые функции, описывающие упругие колебания кристалла, ищут в комплексном виде:
. (3.19)
Далее, накладывают
периодические граничные
(3.20)
которые выполняются, если:
(3.21)
Тогда волновой вектор может принимать дискретные значения:
(3.22)
где - целые числа.
В таком случае на одно разрешенное значение вектора приходится объем -пространства равный , где - объем кристалла. Затем предполагают определенный вид зависимости частоты от волнового вектора . Часто зависимости вычисляют теоретически (см. раздел 3.2), а иногда и с учетом полученных экспериментально зависимостей . Эти зависимости как правило похожи на приведенные в разделах 3.1 и 3.2. Далее, область разрешенных значений векторов разбивают на участки, в пределах которых меняется незначительно, чтобы можно было пользоваться формулами, аналогичными используемым в модели Эйнштейна. Затем, как правило численными методами, суммируют вклады от всех участков в вычисляемую физическую величину, например внутреннюю энергию.
В сферически-симметричных
случаях (когда зависит
. (3.23)
С помощью можно
находить средние значения
. (3.24)
Функция обязана удовлетворять условию нормировки:
, (3.25)
требующему, чтобы общее число нормальных колебаний равнялось .
Рассмотрим применение
этого подхода на примере
Модель Дебая. В рамках модели Дебая считают, что , где - скорость звуковых волн. Такое приближение называется приближением сплошной среды. Ясно, что при таком подходе не удается учесть дисперсию и оптические ветви дисперсионной зависимости фононов (см. раздел 3.2). При этом дополнительно считают, что - взвешенная скорость, то есть имеющая промежуточное значение между скоростями поперечных и продольных волн, как известно сильно отличающихся друг от друга. Зависимость является сферически симметричной, что упрощает расчеты. Число разрешенных векторов , с модулем меньших заданного в таком случае можно найти, разделив объем сферы радиуса в -пространстве на объем, приходящийся на одно разрешенное значение вектора :
(3.26)
Функцию можно
найти из соотношения . Величину
можно найти налогичным
(3.27)
Необходимо помнить
об условии нормировки. Это условие
требует, чтобы общее число
осцилляторов равнялось . В рамках
модели Дебая просто
(3.28)
Вид функции приведен на рис. 3.11 (кривая 1).
Рис. 3.11.
Функция плотности состояний в модели Дебая
Значения оказываются близкими к , соответствующему границе первой зоны Бриллюэна. Однако следует помнить, что реальная область допустимых значений вектора , совпадающая с первой зоной Бриллюэна, в рамках модели Дебая заменяется на не совпадающую с ней сферу.
Внутренняя энергия,
(3.29)
Здесь и . Через ( обозначают температуру Дебая равную:
. (3.30)
Следует отметить, что интеграл (3.29)
можно вычислить только
Для вычисления теплоемкости
следует продифференцировать (
(3.31)
Полученный интеграл, как и выражение (3.29), можно вычислить только численными методами, график зависимости приведен на рис. 3.12.
Рис. 3.12.
Зависимость теплоемкости , рассчитанная в рамках модели Дебая. По оси абсцисс отложена приведенная температура
При высоких значениях
При малых температурах , покажем это. Примем во внимание, что при в (3.31) и . Тогда пределы интегрирования в (3.31) можно считать нулем и бесконечностью. Сам же интеграл последней формуле (3.31) окажется равным некоторой константе и из (3.31) зависимость , оказывается очевидной.
Закон при можно получить
из следующих достаточно
. (3.32)
Таким образом модель Дебая сравнительно хорошо описывает зависимость и при низких температурах. Поэтому часто ее используют для приближенного вычисления вклада в теплоемкость от акустических ветвей дисперсионной зависимости фононов, особенно при очень низких температурах. Также ее используют для прогнозирования рассеяния излучений веществом, взаимодействия нейтронов и фотонов с фононами. Для каждого вещества подобрана по сопоставлению с опытными данными о его теплоемкости своя индивидуальная температура Дебая, приводимая в различных справочниках [5].
Для приближенной
Задачи к разделу 3.3.
3.5. Получить закон Дюлонга и Пти из соотношения (3.31) и поправки к закону Дюлонга и Пти при высоких температурах, таких что .
Указание. Преобразовать подинтегральное выражение в формуле (3.31), разложив подинтегральное выражение в ряд по малому параметру , и вычислить его приближенное значение.
3.4. Ангармоническое приближение
В предыдущих разделах (3.1-3.3) кристалл рассматривался как совокупность невзаимодействующих осцилляторов. В этом случае потенциальная энергия возрастает пропорционально квадрату отклонения осциллятора от положения равновесия, а параметры, описывающие жесткость решетки не меняются при увеличении отклонений осцилляторов от положения равновесия. Это подход называют гармоническим приближением. Такие модели позволяют вычислить теплоемкость кристалла, но не позволяют вычислять многие другие параметры кристалла, связанные с взаимодействием фононов друг с другом, например теплопроводность. Заметим, что гармоническая модель не предусматривает взаимодействия осцилляторов - фононов друг с другом, так как они изначально выбираются как отвечающие нормальным, невзаимодействующим колебаниям. Как увидим далее, объяснение зависимости модулей упругости от температуры и теплового расширения требует учета ангармонических поправок, учитывающих отклонение от квадратичного закона изменения потенциальной энергии при отклонения осцилляторов от положения равновесия.
Тепловое расширение кристаллов. Все кристаллы (и жидкости, за очень малыми исключениями) при увеличении температуры в той или иной степени расширяются. Природа этого явления при детальном рассмотрении достаточно сложная. Считают, что тепловое расширение связано с увеличением средних расстояний между атомами кристалла, что может быть обусловлено многими причинами, в том числе асимметричной зависимостью потенциальной энергии от смещения атомов из положения равновесия, изменениями величин сил взаимодействия между атомами при увеличении температуры, перегруппировками разных атомов, изменением преимущественных ориентаций их электронных облаков и некоторыми другими причинами. В данном разделе мы рассмотрим в основном первую причину, поскольку она как правило является самой главной и поскольку анализ других причин очень сложен для учебника.
Прежде всего отметим,
что тепловое расширение не
удается объяснить в рамках
рассмотренных в предыдущих
Рис. 3.13.
Зависимость потенциальной энергии взаимодействия двух атомов от расстояния между ними в рамках различных приближений
Рассмотрим реальную зависимость потенциальной энергии взаимодействия двух атомов от расстояния между ними (линия 1 на рис. 3.13), и эту же зависимость в случае гармонического приближения (линия 2 на рис. 3.13). В последнем случае при увеличении амплитуды колебаний атомов среднее расстояние между ними, совпадающее с минимумом потенциальной энергии и положением равновесия, не меняется, а значит и нет теплового расширения. Если же рассмотреть реальную зависимость , то видно, что из-за ее асимметричности при увеличении энергии (и амплитуды) колебаний, обусловленном увеличением температуры, среднее расстояние между атомами несколько увеличится. Степень этого увеличения определяется отклонением зависимости от симметричной. Чтобы учесть эту асимметричность, надо раскладывать в ряд, содержащий более высокие степени чем . Асимметричность обычно описывается членом, содержащим .
(3.33)
Можно показать (см. Задачу 3.5), что при достаточно высоких температурах, когда справедливо классическое распределение Больцмана, учет последнего слагаемого в (3.33) позволяет получить, что
(3.34)
Этот результат соответствует
часто используемым для
(3.35)
Здесь - длина тела
при , а - длина тела при заданной
температуре . Параметр называют
коэффициентом линейного
(3.36)
Разработано несколько простых и очень точных методов экспериментального определения . Самыми распространенными из них являются точное определение зависимости длины образца (дилатометрия) при его нагреве и определение температурной зависимости параметра решетки или же межплоскостного расстояния методами, рассмотренными в главе 1 (рентгеновская дилатометрия). По измеренной зависимости или по формуле (3.36) вычисляют .
Значения дают информацию
о точности гармонического
Величина для большинства веществ при имеет порядок . Параметр аномально мал и составляет менее для некоторых железо-никелевых, так называемых инварных, сплавов при , что широко используется в технике [6-8], когда надо изготовить деталь с минимально меняющимися при нагреве размерами, например маятник часов или заплавляемые в стекло контакты вакуумных ламп.
Заметим, что в
случае квадратичной
При распространении
фононов в кристалле одни
Теплопроводность кристаллов.
Коэффициент теплопроводности определяется
как количество тепловой
(3.37)
Данная формула используется
и для экспериментального
Рис. 3.14.
Схема установок для
Экспериментальные данные для диэлектриков показывают, что увеличивается при повышении от температуры абсолютного нуля; имеет при температуре 30-50 К размытый максимум и при дальнейшем увеличении температуры убывает. При сравнительно высоких температурах (порядка температуры Дебая) коэффициент теплопроводности убывает как .
Теоретическое объяснение
такой зависимости в