Лекции по "Педагогике"

Автор работы: Пользователь скрыл имя, 17 Октября 2014 в 23:44, курс лекций

Краткое описание

1. Методика роботи вчителя у підготовчому періоді до вивчення чисел
У вивченні математики першого класу певну роль відіграє дочисловий період, матеріал якого опрацьовується у вигляді окремих уроків.
Згідно програми період називається дочисловим, але це не означає, що на даному етапі відсутня робота з числами, оскільки кожен урок супроводжується роботою лічити предмети в межах десяти

Прикрепленные файлы: 1 файл

MATEMATIKA_DERZh_EKZ.docx

— 229.60 Кб (Скачать документ)
  • навчити учнів порівнювати число і вираз, два вирази;
  • розпочати формування уявлень дітей про тотожні перетворення математичних виразів.
Яка ж система вправ використовується при підготовці до введення першого найпростішого математичного виразу «сума»? –1) визначення чисельності скінченних множин за допомогою лічби; 2) порівняння чисельностей двох скінченних множин предметів; 3) утворення наступного і попереднього числа із двох доданків; 4) розв'язування прикладів на додавання і віднімання чи множення і ділення відповідно; 5) порівняння чисел; 6) засвоєння відповідної термінології та символіки; 7) розв'язування простих задач тощо.
Коли і як відбувається знайомство молодших школярів із першим найпростішим числовим виразом? – при вивченні додавання і віднімання у межах десяти. Це обумовлено тим, що теоретичною основою випадків віднімання виду 9-6 є віднімання числа від суми, тобто 9-6=(6+3)-6. Отже, виникає необхідність обізнаності учнів з математичними виразами. Як ми вже зазначали, першими найпростішими математичними виразами з точки зору математики фактично є числа 1, 2, 3. Крім того, уже при вивченні числа 2 діти знайомляться з математичними виразами - сума 1+1, різниця 2-1. Разом з тим, складаючи таблиці додавання і віднімання з переходом через десяток, учні використовують знаки “+” (плюс) і “-“ (мінус).лише як коротке позначення слів “додати” чи “відняти”, вживаючи замість терміна “вираз” слово “приклад”.
У подальшій роботі з формування уявлень дітей про дії додавання і віднімання поступово вводяться назви компонентів і результатів дій додавання і віднімання, назви знаків дій “плюс”, “мінус” і термін “вираз”. Спочатку ці терміни використовуються лише у мові вчителя, а потім поступово входять до активного словника школярів. З цією метою у підручнику є вправи виду: 1) прочитай спочатку вирази на додавання, а потім вирази на віднімання, наприклад: 8+2, 16-7 тощо; 2) складіть і запишіть два вирази на віднімання, а потім на додавання, наприклад: 7-2, 6+7 тощо; 3) випишіть парами рівні між собою вирази, наприклад: 10+7=9+8, 12-7=14-9 тощо. Вчитель не повинен забувати про те, що у разі нерозуміння учнями вказаних формулювань, слід термін вираз замінити словом приклад. Коли школярі ознайомилися з дужками, то у них підсвідомо формується інше значення знаків дій: знак “+” (плюс) позначає у виразі (7+3)+5 суму чисел 7 і 3, а знак “мінус” у виразі (12-2)-3 – різницю чисел 12 і 2. Таким чином, вся проведена робота готує дітей до введення перших найпростіших числових виразів: сума і різниця.
Як же ознайомлювати школярів з найпростішими числовими виразами?–всі найпростіші математичні вирази (сума, різниця, добуток, частка) вводяться майже однаково. Відмінність полягає лише в тому, що при введенні першого числового виразу “сума” діти спочатку знайомляться з цим терміном як результатом дії додавання, а лише через 2-3 уроки термін “сума” вводиться для позначення математичного виразу. При ознайомленні з різницею, добутком і часткою терміни “різниця”, “добуток” і “частка” зразу ж вводяться як для позначення результату арифметичних дій, так і для позначення математичного виразу. Виходячи із цього, можна зробити висновок про те, що ТМО ознайомлення дітей з найпростішими виразами аналогічні.
Для того, щоб формувати у дітей уявлення про найпростіші математичні вирази (сума, різниця, добуток і частка) та створювати належні умови для засвоєння відповідної термінології використовується така система вправ:
  1. завдання,  в яких потрібно записати відповідний математичний вираз, наприклад: запишіть суму чисел “5” і “2”;
  1. вправи на обчислення числових значень вказаних математичних виразів, наприклад: обчисліть, чому дорівнює різниця чисел “7” і “3”;
  1. завдання на читання відповідних виразів та обчислення їхніх числових значень, наприклад: прочитайте запис 3·2 і знайдіть його числове значення;
  1. замініть дане число сумою (різницею, добутком, часткою) двох чисел, наприклад: замініть число 144 добутком двох однакових співмножників;
  1. вправи на порівняння двох чисел, числа і виразу або двох виразів, наприклад: 27*23, 34*30+5, 40+7*40+5 тощо.
Як же ознайомити учнів зі складеними виразами? – аналіз методичної літератури та діючих підручників з математики для І-ІУ класів дозволяє твердити, що спочатку слід провести необхідну підготовчу роботу. Її сутність полягає в тому, що формування уявлень про складені вирази розпочинається вже при вивченні табличних випадків додавання і віднімання. Так, неявно перші складені вирази з'являються вже тоді, коли діти, складаючи таблиці додавання та віднімання, використовують прийоми прилічування чи відлічування по одному або прилічування чи відлічування групами, наприклад: 7+2=7+1+1=8+1=9, 13-5=13–3-2=10-2=8. Школярі при виконанні таких вправ міркують так: 2 це 1 і 1, щоб до 7 додати 2, необхідно до 7 додати 1, а до одержаного результату додати ще 1. Отже, розглядаючи такі складені вирази, діти не читають їх як складені, але знайомляться із тотожнім перетворенням математичних виразів та з порядком виконання дій у виразах без дужок.
Як же ознайомити учнів із виразами, що містять змінну? – підготовчою роботою до ознайомлення учнів із виразами, що містять змінну, є наступне: 1) виконання вправ із віконцями, наприклад: □+2=7, □-5=3, 9-□=4 тощо; 2) ознайомлення з новими буквами латинського алфавіту, причому спочатку вводяться букви, які пишуться і читаються в українській і латинській мовах однаково, (наприклад: а, к, м тощо), потім, які пишуться однаково в обох мовах, але читаються по-різному (наприклад: в, с, р тощо), і нарешті, які пишуться і читаються по-різному; 3) розв'язування вправ на знаходження невідомих компонентів арифметичних дій, наприклад: х+7=9, с-7=12, 15-у=8 тощо; 4) розв'язування задач з пропущеними числами.

 

30.М-ка  вивчення рівнянь, нерівностей що  містять змінну

теоретичною основою прийому розв'язування рівнянь у початкових класах є знання учнями залежностей між компонентами та результатами арифметичних дій і правил знаходження невідомих компонентів цих дій.
Рівняння розглядаються рівняння з однією змінною, які можна поділити на дві групи: 1) найпростіші рівняння, до яких відносять рівняння на знаходження невідомого доданка, зменшуваного, від’ємника, множника, діленого чи дільника, наприклад: 2+х=7, х-5=12, 12-х=7, 5●х=45, х:5=9, 48:х=6 тощо; 2) складені рівняння, до яких відносять рівняння, одержані із найпростіших, наприклад: (9+х):12=132 тощо.
Яка система вправ 1) найпростіші рівняння на знаходження невідомого доданка, зменшуваного, від’ємника, множника, діленого і дільника; 2) розв’язування рівнянь виду х+5=9+3, в яких права частина являє собою вираз; 3) розв'язування рівнянь виду х-24:8=7, в яких ліва частина містить вираз, до якого не входить невідоме; 4) рівняння найскладнішої структури, наприклад: (у-7):8=12, в яких ліва частина містить вираз, до якого входить невідоме; 5) розв'язування текстових задач з допомогою складання рівнянь.
Всі найпростіші рівняння вводяться за одним і тим самим планом. Покажемо це на прикладі рівняння на знаходження невідомого доданка. Безпосередньо на уроці, на якому будемо ознайомлювати учнів з цим рівнянням слід повторити назви компонентів дії додавання і правило знаходження невідомого доданка. Для введення рівняння цього виду корисно розглянути таку задачу: “У клітці було кілька чорних кролів і 5 білих кролів. Всього у клітці було 9 кролів. Скільки чорних кролів було у клітці?”. Ознайомивши учнів із задачею проводимо наступну бесіду: чи відомо, скільки чорних кролів було у клітці? – ні, лише сказано, що кілька. Оскільки це невідомо, то як зображатимемо цю кількість? - віконцем. Скільки білих кролів було у клітці? – 5. Більше чи менше разом було чорних і білих кролів у клітці? - більше. Якщо всіх кролів було більше, то якою дією слід знаходити загальну кількість кролів у клітці? – додавання. Як це записати? - +5. Що означає цей запис? – загальну кількість кролів у клітці. А скільки ж всього кролів було у клітці? – 9. Що позначає запис +5? – загальну кількість кролів у клітці. Що позначає число 9? – загальну кількість кролів у клітці. Що можна сказати про ці кількості? - вони однакові. Який знак можна поставити між ними? – знак “=”. Який запис одержимо? - +5=9. У математиці невідомі числа прийнято позначати буквами латинського алфавіту, а тому замість віконця поставимо букву х і одержимо запис х+5=9. У математиці такі записи називають рівняннями. Рівняння розв’язують. Розв’язати рівняння - це означає знайти таке невідоме число, підстановка якого у рівняння робить числову рівність правильною. Як називаються числа при додаванні? – перший доданок, другий доданок, сума. Що нам невідомо? - перший доданок. Як знайти невідомий перший доданок? – від суми відняти відомий другий доданок. Отже, маємо: х=9–5. х=4. Ми записали розв’язання рівняння. У математиці розв’язання рівняння потрібно перевіряти. Для цього замість букви х слід підставити знайдене число, знайти значення лівої частини і порівняти з правою частиною: 4+5=9. 9=9.
Поступово вводяться інші види найпростіших рівнянь на знаходження невідомих компонентів інших дій і складені рівняння різноманітних структур.
Покажемо, як можна ознайомити учнів з рівняннями складнішої структури на прикладі такого рівняння: х+5=8+4. Робота з учнями проводиться так: що невідомо у цьому рівнянні? – доданок. Чи можна зразу відшукати його? – ні. Чому його не можна знайти одразу? - бо слід знайти значення суми у правій частині. Чому дорівнює ця сума? – 12. Як запишеться тоді рівняння? - х +5=12. Чи можна тепер знайти невідоме? – так, х=12–5. х=7. Як визначити, чи правильно розв’язано рівняння? – зробити перевірку: 7+5=12, 9+3=12, 12=12. При розв’язуванні рівнянь виду х–21:3=7, в яких один із компонентів лівої частини є виразом, робота проводиться так: що невідомо у рівнянні? - зменшуване. Чи можна його зразу знайти? – ні, бо у лівій частині є вираз. Що будемо спочатку робити при розв’язуванні цього рівняння? – шукати значення виразу 21:3. Якого вигляду набуде рівняння? - х–7=7. Після цього слід запропонувати окремим учням продовжити роботу самостійно, а решта дітей працюватиме під керівництвом вчителя.
рівняння найскладнішої структури слід вводити в готовому вигляді, а потім вчити дітей його читати і розв’язувати або  перше рівняння найскладнішої структури повинне з’явитися на очах у дітей в результаті розв’язування складеної задачі.
Після ознайомлення учнів із першим рівнянням такої структури розпочинається робота з формування умінь їх правильно читати та розв'язувати. Щоб правильно прочитати рівняння (х–12):3=25, потрібно з’ясувати, яка дія буде виконуватися останньою і як називаються компоненти цієї дії. Робити це слід так: яка дія виконуватиметься останньою? – ділення. Як називаються числа при діленні? – ділене, дільник, частка. Як прочитати ліву частину рівняння? - частка різниці невідомого числа і числа 12 та числа 3. Як прочитати все рівняння? - частка різниці невідомого числа і числа 12 та числа 3 дорівнює 25.
Після введення першого такого рівняння розпочинаємо роботу з формуванням уміння розв’язувати такі рівняння. Програма не вимагає, щоб всі учні вміли розв’язувати рівняння такої структури. Їх лише треба ознайомити з такими рівняннями, які діти розв’язують під керівництвом вчителя. Але сильніші учні повинні розв’язувати такі рівняння самостійно. Для формування уміння навчати учнів розв'язувати рівняння найскладнішої структури пропонуємо студентам виконати завдання № 16 для самостійної роботи.
Для того, щоб учні усвідомили сутність поняття “розв’язати рівняння” (розв’язати рівняння – це означає знайти таке число, при підстановці якого у дане рівняння одержуємо правильну рівність), “перевірка рівняння” та не орієнтувалися лише на правило знаходження невідомого компонента дії, використовують спосіб підбору, бо він зразу ж орієнтує учнів на усвідомлений та математично правильний підхід до розв’язання рівняння.
Поняття рівняння тісно пов'язане з поняттям виразу, змінної, рівності. З рівняннями діти ознайомлюються у 3 класі. Відповідна підготовча робота розпочинається з 1 класу. Вона передбачає виконання вправ з "віконцями" та знаходження невідомого компонента арифметичних дій на основі зв'язків між компонентами та результатами арифметичних дій. Як же ознайомити учнів із виразами, що містять змінну? – підготовчою роботою до ознайомлення учнів із виразами, що містять змінну, є наступне: 1) виконання вправ із віконцями, наприклад: □+2=7, □-5=3, 9-□=4 тощо; 2) ознайомлення з новими буквами латинського алфавіту, причому спочатку вводяться букви, які пишуться і читаються в українській і латинській мовах однаково, (наприклад: а, к, м тощо), потім, які пишуться однаково в обох мовах, але читаються по-різному (наприклад: в, с, р тощо), і нарешті, які пишуться і читаються по-різному; 3) розв'язування вправ на знаходження невідомих компонентів арифметичних дій, наприклад: х+7=9, с-7=12, 15-у=8 тощо; 4) розв'язування задач з пропущеними числами.

 

31.М-ка  розв’язування задач на подвійне  зведення до одиниці та ускладнених  задач на знаходження четвертого  пропорційного

Фабула цих задач описує сит. що характеризуються величинами що зв’язані пропорційною залежністю. В задачах на скл прав 3 дано по 2 значення кожної з 2 величин і 1 знач 3-ї величини, а вимога знайти 2е відповідне значення 3-ї величини за умови, що 4а величина стала. (за 5 днів 6 машин витягували 24000 м дроту. С-ки м дроту витягли 16 таких машин за 20 днів?) –щоб знай ти с-ки м дроту витягнули 16 машин за 20 днів…. Відбулося подвійне пряме зведення до 1, тобто до 1 звед кожну з 2 величин, для яких в умові дано значення. При подвійному прямому зведенні до 1 розвяз задач на скл прав 3 склад з 4 дій, де 1і2 дії : на рівні частини, а 3і4 дії – однакові *. 
На знаходж 4 пропорційного. Ці задачі ще називають на просте правило 3. тому що в тексті задачі дано 3 числові значення, з яких 2 числа –це значення 1 величини, а 3-є –значення 2ї величини. Про 3 величину в задачах цього типу часто нічого не задається. Шляхом логічних міркувань встановлюють зв'язок шуканої величини з відповідним знач даної величини та із сталою величиною. Пошук такого зв’язку полегшується за допомогою скороченого запису тексту задачі в таблиці, а спосіб розв’язування задачі залежить від шляху міркування. Є 3 способи розв’язування цих задач: 1) пряме зведення до 1; 2)оберненого або непрямого звед… 3) спосіб відношень

 

32.М-ка  ознайомлення учнів з геометричними  фігурами та їх найпростішими  властивостями

Крива і пряма лінії. Формування поняття про пряму і криву лінії можна почати показом спочатку обвислого, а потім натягнутого тонкого шнура. Учням варто запропонувати зігнути аркуш паперу довільної форми і в будь-якому напрямі. Розправивши цей аркуш, вони побачать, що на ньому утворилася пряма лінія. Тут можна сказати, що пряма лінія нескінченна, а бачимо ми лише її частину.

Информация о работе Лекции по "Педагогике"