Применение методов оптической атомной спектроскопии в контроле качества и безопасности пищевых продуктов

Автор работы: Пользователь скрыл имя, 16 Апреля 2014 в 16:58, курсовая работа

Краткое описание

Цель курсовой работы: изучить методы определения свинца и раскрыть контроль за загрязнением пищевых продуктов.
Задачи курсовой работы:
- рассмотреть основные токсиканты в пищевых продуктах;
- рассмотреть количественные аналитические методы определения свинца;
- рассмотреть контроль за загрязнением пищевых продуктов;
- изучить методику контроля свинца в мясных консервах для детского питания атомно-абсорбционным методом.

Содержание

Введение…………………………………………………………………………….
1.Аналитический обзор…………………………………………………………….
Общая характеристика анализируемого продукта и технологии его производства, аналитический обзор ТНПА и литературных источников по методам контроля качества заданного вида продукции………………………………………………………………………
Обоснование необходимости контроля заданного параметра качества……
Обзор методов анализа которые могут быть использованы для определения заданного параметра…………………………………………….
Обоснование выбора метода анализа для контроля заданного параметра….
2. Теоретические основы выбранного метода анализа………………………….
2.1 Физико-химические основы метода………………………………………….
2.2 Аппаратурное оснащение для осуществления метода………………………
Особенности изучаемого метода анализа…………………………………….
3.Методика контроля заданного (выбранного) параметра качества заданного вида продукции…………………………………………………………………….
Заключение…………………………………………………………………………
Список использованных источиков………………………………………

Прикрепленные файлы: 1 файл

Учреждение образования 2.docx

— 608.18 Кб (Скачать документ)

           При качественном АЭСА спектры проб сравнивают со спектрами известных элементов, приведенных в соответствующих атласах и таблицах спектральных линий, и таким образом устанавливают элементный состав анализируемого вещества. При количественном анализе определяют количество (концентрацию) искомого элемента в анализируемом веществе по зависимости величины аналитического сигнала (плотность почернения или оптический плотность аналитической линии на фотопластинке; световой поток на фотоэлектрический приемник) искомого элемента от его содержания в пробе. Эта зависимость сложным образом определяется многими трудно контролируемыми факторами (валовой состав проб, их структура, дисперсность, параметры источника возбуждения спектров, нестабильность регистрирующих устройств, свойства фотопластинок и т.д.). Поэтому, как правило, для ее установления используют набор образцов для градуировки, которые по валовому составу и структуре возможно более близки к анализируемому веществу и содержат известные количества определяемых элементов. Такими образцами могут служить специально приготовленные металлические сплавы, смеси веществ, растворы, в том числе и стандартные образцы, выпускаемые промышленностью. Для устранения влияния на результаты анализа неизбежного различия свойств анализируемого и стандартных образцов используют разные приемы; например, сравнивают спектральные линии определяемого элемента и так называемой элемента сравнения, близкого по химическим и физическим свойствам к определяемому. При анализе однотипных материалов можно применять одни и те же градуировочные зависимости, которые периодически корректируют по поверочным образцам.

Чувствительность и точность АЭСА зависят главным образом от физических характеристик источников возбуждения спектров - температуры, концентрации электронов, времени пребывания атомов в зоне возбуждения спектров, стабильности режима источника и т. д. Для решения конкретной аналитической задачи необходимо выбрать подходящий источник излучения, добиться оптимизации его характеристик с помощью различных приемов - использование инертной атмосферы, наложение магнитного поля, введение специальных веществ, стабилизирующих температуру разряда, степень ионизации атомов, диффузионные процессы на оптимальном уровне и т.д. 1.4 Обоснование выбора метода анализа, оптимального для контроля содержания свинца.

            В данной курсовой работе я рассмотрю метод атомно-абсорбционной спектроскопии из-за его многочисленных достоинств.

            Атомно-абсорбционный анализ – один из наиболее чувствительных, быстрых, точных и селективных методов. Основным его достоинством является селективность. Возможность взаимного наложения резонансных линий различных элементов при атомно-абсорбционных измерениях практически исключена. Из одного раствора можно определить большое количество элементов без разделения.

Кроме того, в эмиссионном анализе регистрируется излучение возбужденных атомов, концентрация которых сильно зависит от температуры, и даже небольшое ее изменение влияет на интенсивность аналитического сигнала .

          Для абсорбционного же анализа существенно количество атомов, находящихся в возбужденном состоянии. Благодаря этому обстоятельству значительно уменьшается взаимное влияние компонентов образца, что дает возможность использовать для градуировки в большинстве случаев водные растворы определяемого элемента.

Результат анализа в атомно-абсорбционной спектрометрии зависит главным образом от числа невозбужденных атомов, которое в известных пределах сравнительно мало изменяется с температурой. Это уменьшает эффекты взаимного влияния компонентов пробы на аналитический сигнал. В атомно-абсорбционной спектрометрии практически полностью исключена возможность наложения линий различных элементов, так как в условиях атомно-абсорбционного анализа число линий в спектре значительно меньше, чем в эмиссионной спектроскопии .

          Методом атомно-абсорбционной спектрометрии можно определять почти 70 элементов, главным образом металлов. Неметаллы, как правило, непосредственно определять нельзя. В то же время существуют способы косвенного определения неметаллов по величине поглощения молекулярных полос. Атомно-абсорбционный метод широко используют как метод массовых, быстрых, селективных и достаточно точных определений металлов. Методом атомно-абсорбционной спектрометрии принципиально возможно определять как следовые, так и достаточно высокие содержания (в последнем случае — после соответствующего разбавления). Чаще всего этим методом определяют малые содержания: в пламенной атомно-абсорбционной спектрометрии — порядка нанограммов-микрограммов на миллилитр, в электротермической — пикограммов-нанограммов на миллилитр.

В электрическом атомно-абсорбционном спектрометре можно определить элементы, концентрация которых в пробе составляет фемтограммы, объем самой пробы при этом всего 10-200 мкл.

Недостаток атомно-абсорбционной спектрометрии состоит в том, что это одноэлементный метод анализа. Для определения каждого элемента необходимо использовать свою лампу с полым катодом. Для достаточно быстрого определения нескольких элементов можно установить несколько ламп во вращающийся барабан и поочередно облучать атомизатор. Однако производительность такого устройства все же недостаточно высока, а соотношение “производительность — затраты” ниже, чем для атомно-эмиссионного метода. Трудности могут возникнуть и при определении методом атомно-абсорбционной спектрометрии с электротермической атомизацией сверхмалых количеств элементов в матрицах сложного состава. В подобных случаях для получения правильных результатов необходимо сочетание атомно-абсорбционной спектрометрии с химическими методами пробоподготовки, например, отделения определяемого компонента от матрицы с помощью ионообменной хроматографии .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Теоретические основы атомно-абсорбционного метода анализа

2.1 Физико-химические  основы метода

        Физическую основу атомно-абсорбционной спектроскопии составляет поглощение резонансной частоты атомами в газовой фазе. Если на невозбужденные атомы направить излучение света с резонансной частотой поглощения атомов, то излучение будет поглощаться атомами, а его интенсивность уменьшится. И таким образом, если в эмиссионной спектроскопии концентрация вещества связывалась с интенсивностью излучения, которое было прямо пропорционально числу возбужденных атомов, то в атомно-абсорбционной спектроскопии аналитический сигнал (уменьшение интенсивности излучения) связан с количеством невозбужденных атомов.

         Число атомов в возбужденном  состоянии не превышает 1-2% от  общего числа атомов определяемого  элемента в пробе, поэтому аналитический  сигнал в атомно-абсорбционной  спектроскопии оказывается связанным  с существенно большим числом атомов, чем в эмиссионной спектроскопии, и, следовательно, в меньшей степени подвержен влиянию случайных колебаний при работе атомно-абсорбционного спектрофотометра.

         Уменьшение интенсивности резонансного  излучения в условиях атомно-абсорбционной  спектроскопии подчиняется экспоненциальному  закону убывания интенсивности  в зависимости от длины оптического  пути и концентрации вещества, аналогичному закону Бугера-Ламберта-Бера. Если I0 - интенсивность падающего монохроматического света, а I - интенсивность этого света, прошедшего через пламя, то величину lg(I0/I) можно назвать оптической плотностью. Концентрационная зависимость оптической плотности выражается уравнением

lg (I0/I) = А = k l c ,

где k - коэффициент поглощения; l - толщина светопоглощаюшего слоя (пламени); с - концентрация.

           В практике атомно-абсорбционного  анализа для количественных определений  обычно применяют метод градуировочного графика и метод добавок.

          Методы атомно-абсорбционной спектроскопии  могут быть использованы или  используются в анализе практически  любого технического или природного  объекта, особенно там, где необходимо  определить небольшие содержания  элементов. Методики атомно-абсорбционного  определения разработаны более  чем для 70 элементов периодической  системы Д.И. Менделеева.

          Предел обнаружения с помощью  атомно-абсорбционного анализа для  многих элементов характеризуется  величиной порядка 10-5...10-6%. Погрешность  определения обычно составляет  примерно 5% и в зависимости от  различных условий изменяется  в пределах от 3 до 10%.

           Метод имеет также ряд ограничений. Атомно-абсорбционным методом не  определяются элементы, резонансные  линии которых лежат в далеком  ультрафиолете (углерод, фосфор, галогены  и др.).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Аппаратурное  оснащение для осуществления  метода

          Атомно-абсорбционный спектрофотометр , укомплектованный горелкой для воздушно-ацетиленового пламени, корректором фонового поглощения и источниками резонансного излучения свинца, кадмия, меди, цинка и железа (лампами с полым катодом, безэлектродными разрядными лампами или другими равноценными источниками). Допускается применение спектрофотометра без корректора фонового поглощения при условии проведения экстракционного концентрирования ТУ 4434-009-2990357-95(Приложение А,Б).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Особенности  метода атомно-абсорбционной спектрометрии 

           Перевод анализируемого объекта  в атомизированное состояние и формирование поглощающего слоя пара определенной и воспроизводимой формы осуществляется в атомизаторе - обычно в пламени или трубчатой печи. Наиболее часто используют пламя смесей ацетилена с воздухом (макс. температура 2000°С) и ацетилена с N2O (2700°С).        Горелку со щелевидным соплом длиной 50-100 мм и шириной 0,5-0,8 мм устанавливают вдоль оптической оси прибора для увеличения длины поглощающего слоя.

Трубчатые печи сопротивления изготавливают чаще всего из плотных сортов графита. Для исключения диффузии паров через стенки и увеличения долговечности графитовые трубки покрывают слоем газонепроницаемого пироуглерода. Максимальная температура нагрева достигает 3000 °С. Менее распространены тонкостенные трубчатые печи из тугоплавких металлов (W, Та, Мо), кварца с нихромовым нагревателем.

Для защиты графитовых и металлических печей от обгорания на воздухе их помещают в полугерметичные или герметичные камеры, через которые продувают инертный газ (Аr, N2).

           Введение проб в поглощающую  зону пламени или печи осуществляют  разными приемами. Растворы распыляют (обычно в пламя) с помощью пневматических  распылителей, реже - ультразвуковых. Первые  проще и стабильнее в работе, хотя уступают последним в  степени дисперсности образующегося  аэрозоля. Лишь 5-15% наиболее мелких  капель аэрозоля поступает в  пламя, а остальная часть отсеивается  в смесительной камере и выводится  в сток. Максимальная концентрация  твердого вещества в растворе  обычно не превышает 1%. В противном  случае происходит интенсивное  отложение солей в сопле горелки.

           Термическое испарение сухих  остатков растворов - основной способ  введения проб в трубчатые  печи. При этом чаще всего пробы  испаряют с внутренней поверхности  печи; раствор пробы (объемом 5-50 мкл) вводят с помощью микропипетки  через дозировочное отверстие  в стенке трубки и высушивают  при 100°С. Однако пробы испаряются со стенок при непрерывном возрастании температуры поглощающего слоя, что обусловливает нестабильность результатов. Чтобы обеспечить постоянство температуры печи в момент испарения, пробу вводят в предварительно нагретую печь, используя угольный электрод (графитовую кювету) графитовый тигель (печь Вудриффа), металлический или графитовый зонд. Пробу можно испарять с платформы (графитового корытца), которую устанавливают в центре печи под дозировочным отверстием. В результате значительного отставания температуры платформы от температуры печи, нагреваемой со скоростью около 2000 К/с, испарение происходит при достижении печью практически постоянной температуры.

            Для введения в пламя твердых  веществ или сухих остатков  растворов используют стержни, нити, лодочки, тигли из графита или  тугоплавких металлов, помещаемые  ниже оптической оси прибора, так что пары пробы поступают  в поглощающую зону с потоком  газав пламени. Графитовые испарители в ряде случаев дополнительно подогревают электрическим током. Для исключения механических потерь порошкообразных проб в процессе нагрева применяются испарители типа цилиндрических капсул, изготовленные из пористых сортов графита.

           Иногда растворы проб подвергают  в реакционном сосуде обработке  в присутствии восстановителей, чаще всего NaBH4. При этом Hg, например, отгоняется в элементном виде, As, Sb, Bi и других - в виде гидридов, которые вносятся в атомизатор потоком инертного газ.. Для монохроматизации излучения используют призмы или дифракционные решетки; при этом достигают разрешения от 0,04 до 0,4 нм.

           При атомно-абсорбционном анализе  необходимо исключить наложение  излучения атомизатора на излучение  источника света, учесть возможное  изменение яркости последнего, спектральные  помехи в атомизаторе, вызванные  частичным рассеянием и поглощением  света твердыми частицами и  молекулами посторонних компонентов  пробы. Для этого пользуются различными  приемами, например модулируют излучение источника с частотой, на которую настраивают приемно-регистрирующее устройство, применяют двухлучевую схему или оптическую схему с двумя источниками света (с дискретным и непрерывным спектрами). Наиболее эффективна схема, основанная на зеемановском расщеплении и поляризации спектральных линий в атомизаторе. В этом случае через поглощающий слой пропускают свет, поляризованный перпендикулярно магнитному полю, что позволяет учесть неселективные спектральные помехи, достигающие значений А = 2, при измерении сигналов, которые в сотни раз слабее.

Информация о работе Применение методов оптической атомной спектроскопии в контроле качества и безопасности пищевых продуктов