Автор работы: Пользователь скрыл имя, 04 Ноября 2014 в 15:04, курсовая работа
Целью написания данной работы является рассмотрение имитационного моделирования в экономике и закрепление теоретических и практических знаний, а так же обзор метода Монте-Карло, как разновидности имитационного моделирования.
Задачи работы
1. Рассмотрение теоретических основ имитационного моделирования, а так же обзор области применения имитационного моделирования.
2. Изучение метода Монте-Карло
3. Выявление основных достоинств и недостатков имитационного моделирования
4. Решение задачи при помощи методов имитационного моделирования на примере ООО «БраваМебель».
Основные недостатки этих методов и способы их устранения с помощью метода Монте-Карло указаны в табл. 1.2.
Таблица 1.2. Устранение недостатков анализа чувствительности и анализа сценариев при использовании для риск-анализа метода Монте-Карло
Метод |
Недостаток |
Решение с помощью имитационного моделирования |
Анализ чувствительности |
Не учитывается наличие корреляции между различными составляющими проекта |
Корреляция моделируется различными методами и учитывается в модели |
Рассматривается влияние только одной варьируемой переменной при остальных неизменных составляющих проекта |
Появляется возможность одновременно моделировать случайные изменения нескольких составляющих проекта сучетам условий коррелированности | |
Анализ сценариев |
Требуется проведение серьезных подготовительных работ по отбору и аналитической переработке информации для создания нескольких сценариев |
Сценарии являются случайными и формируются автоматически при реализации алгоритма метопа Монте-Карло |
Границы сценариев размыты, а построенные оценки значений переменных для каждого сценария в некоторой степени произвольны |
Сценарии формируются исходя из диапазонов возможных изменений случайных величин и подобранных законов распределения | |
Рассматривается эффект ограниченного числа возможных комбинаций переменных; рост числа сценариев и рост числа изменяемых переменных усложняет моделирование |
Количество случайных сценариев может быть сколь угодно велико, так как процесс имитации реализован в виде компьютерной программы, существует метод выбора необходимого числа сценариев, гарантирующего с определенной вероятностью надежность результатов моделирования |
Примечание: литературный источник (собственная разработка).
В общем случае методом Монте-Карло называют численный метод решения математических задач при помощи моделирования случайных величин.
Теоретическое описание метода появилось в 1949 г. в статье «The Monte Carlo method». Создателями данного метода считают американских математиков Дж. Неймана и С. Улама. Название метопу дал известный своими казино город Монте-Карло в княжестве Монако, так как именно рулетка является простейшим механическим прибором по реализации процесса получения случайных чисел, используемого в данном математическом методе. Область применения метода Монте-Карло достаточно широка. В качестве примеров можно привести расчет систем массового обслуживания, расчет качества и надежности изделий, вычисление определенного интеграла и др.
Схема использования метода Монте-Карло в количественном анализе рисков такова: строится математическая модель результирующего показателя как функции от переменных и параметров. Переменными считаются случайные составляющие проекта, параметрами — те составляющие проекта, значения которых предполагаются детерминированными. Математическая модель пересчитывается при каждом новом имитационном эксперименте, в течение которого значения основных неопределенных переменных выбираются случайным образом на основе генерирования случайных чисел. Результаты всех имитационных экспериментов объединяются в выборку и анализируются с помощью статистических методов с целью получения распределения вероятностей результирующего показателя и расчета основных измерителей риска проекта.
Применение метода Монте-Карло в инвестиционных расчетах требует создания специального программного обеспечения.
Разработка компьютерного обеспечения необходима по следующим причинам:
1) осуществляется многократное
повторение имитационных
2) используемые модели сложны (большое количество переменных, учет функций распределения, условий корреляции и т.д.);
3) обработка результатов имитации значительно упрощается;
4) облегчается демонстрация метода в процессе обучения.
Процесс риск-анализа по методу Монте-Карло может быть разбит на три этапа: математическая модель, осуществление имитации, анализ результатов.
Прежде чем перейти к подробному рассмотрению данных этапов, хотелось бы отметить, что применение метода Монте-Карло возможно для расчета различных характеристик проекта: интегральных показателей эффективности проекта, показателей рентабельности осуществляемой в рамках проекта деятельности, исследования сетевого графика реализации проекта со случайными длительностями этапов, моделирования запасов продукции и материалов на складе и т.д. Но в данном случае речь идет о конкретном примере имитационного моделирования эффективности проекта.
Таким образом, под базовым вариантом инвестиционного проекта понимается таблица денежных потоков данного проекта (степень ее детализации зависит от желания исследователя), под результирующим показателем — какой-либо из интегральных показателей эффективности.
Первым этапом в процессе риск-анализа является создание математической модели. Так как для проведения собственно имитационного моделирования по методу Монте-Карло применяется компьютерная программа, самым главным процессом в имитационном моделировании является именно формулировка модели проекта. Каждый инвестиционный проект требует создания своей уникальной модели. Поэтому ее конкретный вид — полностью продукт творчества разработчика.
Основная логика процедуры построения модели состоит в следующем: определение переменных, которые включаются в модель; определение типа распределения, которому эти переменные подвержены; определение взаимозависимости (функциональной и вероятностной зависимости между переменными).
Соблюдение такой процедуры необходимо для создания модели, которая будет выглядеть следующим образом:
NPV =f(x1,...,хi,..., xn; a1,..., aj,..., am), (1.1)
Где: хi — риск-переменные (составляющие денежного потока, являющиеся случайными величинами);
n — число риск-переменных;
aj — фиксированные параметры модели, т.е. те составляющие денежного потока, которые в результате предыдущего анализа были определены как независимые или мало зависимые от внешней среды и поэтому рассматриваются как детерминированные величины;
m — количество параметров модели.
Определение переменных, которые включаются в модель, является самостоятельным этапом риск-анализа, отражающим прежде всего результаты исследования рисков на качественном уровне. Например, проведение опросов экспертов позволяет выделить наиболее «узкие» места проекта.
Кроме того, важную роль в отборе «ключевых» переменных играет анализ чувствительности, осуществляющийся путем расчета рейтинга эластичностей. На основании рейтинга эластичностей отбираются наиболее подверженные риску переменные, т.е. те, колебания которых вызывают наибольшие отклонения результатов проекта. Они и могут быть включены в модель.
Однако решение о включении переменной в модель должно приниматься на основании нескольких факторов, в частности:
1) чувствительности результата
проекта к изменениям
2) степени неопределенности
При формировании модели необходимо стараться выделить в качестве риск-переменных только наиболее важные, значимые переменные. Причины ограничения количества риск-переменных в модели таковы:
1) увеличение количества зависимых переменных модели увеличивает возможность получения противоречивых сценариев из-за сложности в учете и контроле зависимости и коррелируемости;
2) с ростом числа переменных
возрастают издержки (финансовые
и временные), необходимые для
корректного и аккуратного
Если не оговорено условие вероятностной зависимости риск-переменных, то считается, что переменные являются независимыми и подчиняющимися некоторому закону распределения.
Закон распределения задает вероятность выбора значений в рамках определенного диапазона. Стандартные инвестиционные расчеты используют один вид распределения вероятностей для всех проектных переменных, включенных в расчетную модель — детерминированное распределение, когда конкретное единственное значение переменной выбирается с вероятностью, равной единице (р = 1). Следовательно, базовая модель инвестиционного проекта может рассматриваться как детерминированный анализ и частный случай имитационной модели для детерминированных риск-переменных.
Для каждой риск-переменной, являющейся случайной величиной, в процессе создания модели необходимо подобрать вид распределения.
Задача подбора закона распределения сложна прежде всего из-за ограниченности статистических данных. На практике чаще всего используют следующие законы распределения вероятностей: нормальный, треугольный, равномерный, дискретный.
Алгоритм решения задачи подбора закона распределения:
1) определить возможные границы изменения риск-переменной (границы диапазона);
2) выбрать общий вид закона распределения;
3) с учетом диапазона изменения
переменной и общего вида
Как следует из вышеизложенного, процесс подбора законов распределения является в значительной степени творческим процессом, требует анализа различного вида информации и плохо поддается формализации.
Необходимо отметить, что проблема выбора типа распределения вероятностей очень важная, так как точность подбора закона распределения при заданных границах изменения риск-переменных непосредственно влияет на качество модели и точность оценки .распределения вероятностей NPV и другие результаты моделирования.
Отсутствие учета вероятностной зависимости переменных, в частности, коррелированное, может привести к заметным искажениям результатов статистического моделирования. Включение вероятностно зависимых риск-переменных в математическую модель инвестиционного проекта может привести к серьезным искажениям характеристик устойчивости проекта, если условие зависимости не будет учтено в математической модели. Степень смещения результатов зависит от важности вероятностно зависимых переменных по отношению к проекту. Поэтому проводится специальный этап установления наличия вероятностной зависимости, в частности, корреляции между переменными и поиска возможностей ее учета в модели. Это касается как парной, так и множественной корреляции.
Основным этапом имитационного моделирования, в рамках которого с помощью компьютерной программы и реализован алгоритм метода Монте-Карло, является этап осуществления имитации. Он выполняется следующим образом:
1. Генерирование случайных чисел
производится путем
2. Значение каждой независимой
риск-переменной
3. Значения переменных величин
подставляются в модель и
4. Изложенный в пп. 1—3 алгоритм повторяется n раз. Результаты моделирования (т.е. NPV проекта или другой показатель), таким образом, рассчитываются и сохраняются для каждого имитационного эксперимента.
Каждый имитационный эксперимент — это случайный сценарий. Количество имитационных экспериментов или случайных сценариев должно быть достаточно велико, чтобы сделать выборку репрезентативной по отношению к бесконечному числу возможных комбинаций.
Размер случайной выборки n зависит от количества переменных в модели, от диапазона значений риск-переменных и от желаемой точности получения результатов.
На этом же этапе возникает проблема определения погрешности результатов моделирования в зависимости от количества выполненных имитационных экспериментов. Выбор (n) имеет огромное значение для оценки качества модели, т.е. точности подбираемого закона распределения NPV и его характеристик.
Финальным этапом процесса риск-анализа являются анализ и интерпретация результатов, полученных на этапе имитации.
Анализ результатов имитационного моделирования можно разделить на два типа: графический анализ и анализ количественных показателей.
Результатом проведения имитационных экспериментов является выборка из n значений NPV (или другого результирующего показателя). Вероятность каждого случайного сценария равна:
P(i) = 1/n, (1.2)
где n - количество имитационных экспериментов.