Имитационное моделирование в экономике

Автор работы: Пользователь скрыл имя, 04 Ноября 2014 в 15:04, курсовая работа

Краткое описание

Целью написания данной работы является рассмотрение имитационного моделирования в экономике и закрепление теоретических и практических знаний, а так же обзор метода Монте-Карло, как разновидности имитационного моделирования.
Задачи работы
1. Рассмотрение теоретических основ имитационного моделирования, а так же обзор области применения имитационного моделирования.
2. Изучение метода Монте-Карло
3. Выявление основных достоинств и недостатков имитационного моделирования
4. Решение задачи при помощи методов имитационного моделирования на примере ООО «БраваМебель».

Прикрепленные файлы: 1 файл

Имитационное моделирование.docx

— 440.72 Кб (Скачать документ)

 

СОДЕРЖАНИЕ

 

 

 

ВВЕДЕНИЕ

 

Моделирование – это метод исследования сложных систем, основанный на том, что рассматриваемая система заменяется на модель и проводится исследование модели с целью получения информации об изучаемой системе. Под моделью исследуемой системы понимается некоторая другая система, которая ведет себя с точки зрения целей исследования аналогично поведению системы. Обычно модель проще и доступнее для исследования, чем система, что позволяет упростить ее изучение. Среди различных видов моделирования, применяемых для изучения сложных систем, большая роль отводится имитационному моделированию. Имитационной называется модель, которая воспроизводит все элементарные явления, составляющие функционирования исследуемой системы во времени с сохранением их логической структуры и последовательности. В последнее время большое прикладное значение получила разновидность имитационного моделирования, в котором в качестве модели используется программа, выполняемая на ЭВМ. Эта разновидность имитационного моделирования называется программным моделированием систем.

Одним из методов, позволяющих учитывать влияние неопределенности на эффективность инвестиционного проекта является имитационное моделирование по методу Монте-Карло, которое можно отнести к группе теоретико-вероятностных методов. Данные методы отличаются большой теоретической сложностью и малой возможностью их практического применения. Особое место в ряду этих методов занимает имитационное моделирование. Реализация этого способа анализа рисков сложна и требует разработки специального программного обеспечения, но результаты анализа играют важную роль как при оценке влияния неопределенности на показатели эффективности, так и при определении общего уровня риска инвестиционного проекта. Проведение имитационного моделирования по метопу Монте-Карло основано на том, что при известных законах распределения экзогенных переменных можно с помощью определенной методики получить не единственное значение, а распределение результирующего показателя (построить гистограмму в общем случае, либо подобрать теоретический закон распределения вероятностей). Подбор законов распределения экзогенных переменных осуществляется как на данных объективных наблюдений (статистики и т.д.), так и на экспертных оценках. В имитационном моделировании используется математический аппарат имитации по методу Монте-Карло, который применяется для описания процессов, имеющих вероятностную природу.

Целью написания данной работы является рассмотрение имитационного моделирования в экономике и закрепление теоретических и практических знаний, а так же обзор метода Монте-Карло, как разновидности имитационного моделирования.

Задачи работы

1. Рассмотрение теоретических основ имитационного моделирования, а так же обзор области применения имитационного моделирования.

2. Изучение метода Монте-Карло

3. Выявление основных достоинств и недостатков имитационного моделирования

4. Решение задачи при помощи методов имитационного моделирования на примере ООО «БраваМебель».

 

 

 

 

 

 

 

1. ОСНОВНЫЕ ПОНЯТИЯ  ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ

 

1.1. Сущность, модели и применение имитационного моделирования

 

Имитационное моделирование — метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.

Моделирование — метод решения задач, при использовании которого исследуемая система заменяется более простым объектом, описывающим реальную систему и называемым моделью.

Моделирование применяется в случаях, когда проведение экспериментов над реальной системой невозможно или нецелесообразно: например, по причине хрупкости или дороговизны создания прототипа, либо из-за длительности проведения эксперимента в реальном масштабе времени.

Различают физическое и математическое моделирование. Примером физической модели является уменьшенная копия самолета, продуваемая в потоке воздуха. При использовании математического моделирования, поведение системы описывается с помощью формул. Особым видом математических моделей являются имитационные модели.

Имитационная модель — это компьютерная программа, которая описывает структуру и воспроизводит поведение реальной системы во времени. Имитационная модель позволяет получать подробную статистику о различных аспектах функционирования системы в зависимости от входных данных.

Разновидностью имитационного моделирования является статистическое моделирование – обработка данных о системе (модели) с целью получения статистических характеристик системы.

Следует отметить, что в современной литературе не существует единой точки зрения по вопросу о том, что понимать под имитационным моделированием. Тем не менее, в настоящий момент общепризнано, что системы имитационного моделирования являются наиболее эффективным средством исследования сложных систем.

Под системой понимается выделенное в соответствии с некоторым правилом объединение элементов любого рода, образующих связанное целое. Система не изолирована от окружающего мира. Все, что оказывает воздействие на систему, и на что система оказывает воздействие, называется внешней средой. В общем случае состав элементов системы переменный. Одни элементы находятся в системе постоянно, другие появляются и покидают систему (временные элементы). Все атрибуты элементов и системы в целом можно разделить на два типа: переменные и постоянные. Переменными являются атрибуты, значение которых остается неизменным в рассматриваемом периоде времени. Совокупность конкретных значений всех переменных атрибутов элементов системы в целом в некоторый момент времени существования системы определяет состояние системы z(t).

Системы в соответствии с различными признаками могут быть классифицированы следующим образом:

- динамические – статические;

- дискретные – непрерывные – комбинированные;

- стохастические (вероятностные) – детерминированные.

Система является динамической, если ее состояние меняется с изменением времени, в противном случае система является статической. Если состояние системы, т.е. значение ее атрибутов, изменяется непрерывно, то она называется непрерывной системой, а если значения изменяются в дискретные моменты времени, то система называется дискретной. Существуют такие системы, у которых часть атрибутов, описывающих состояние системы, меняется непрерывно, а часть дискретно. Эти системы называются непрерывно-дискретными или комбинированными.

Система называется стохастической, если при одних и тех же начальных условиях результаты функционирования системы будут различаться, иначе система называется детерминированной.

Функционирование динамической дискретной системы в период времени [t0, T] заключается в последовательной смене состояний системы

 

z(t1) -> z(t2) -> . . . -> z

(tn), где

t0 <= t1 <= t2 <= . . . <= tn<= T.


 

Функционирование системы может рассматриваться и описываться как взаимодействие событий, действий или процессов, происходящих в системе.

Под событием понимается всякое изменение состояния системы под воздействием внешней среды и сложившихся в системе условий. Событие рассматривается как мгновенное изменение состояния системы. Под действием понимается пребывание элемента системы в некотором состоянии. Переход элемента в данное состояние (начало действия) и выход из этого состояния (окончание действия) определяется условиями, сложившимися в системе. Упорядоченная во времени логически взаимосвязанная последовательность событий, выделенная в соответствии с некоторым признаком, называется процессом. Таким образом, процесс – это более агрегативное понятие, чем событие и действие. Существует множество систем, процессы функционирования в которых могут быть представлены моделями информационных потоков, получившими название систем массового обслуживания (СМО). Это прежде всего процессы в технических системах – телефонные сети, радиосвязь и телекоммуникации, вычислительные машины, системы и вычислительные сети. При их анализе наиболее важно определить скорость передачи или обработки информации, оценить пропускную способность, загрузку оборудования и т. д. При анализе транспортных систем важнейшими задачами являются определение скорости и объема перевозок, сокращение простоев и др. Процессы жизнедеятельности в биологических системах требуют прежде всего определения благоприятных условий жизни, размножения и развития отдельных особей или популяции (колонии, сообщества) в целом. Многие процессы деятельности человека (социальные, экономические, экологические) могут быть представлены моделями типа СМО. И даже обучение, представляемое как усваивание знаний и забывание, также может быть описано такими моделями. Любая подобная система неизбежно испытывает различного рода возмущения, источниками которых могут быть либо внешние воздействия, обусловленные случайными или систематическими изменениями окружающих условий, либо внутренние флюктуации, возникающие в самой системе в результате взаимодействия элементов. При исследовании эти системы представляются в виде стохастических моделей дискретных процессов (CМДП). Несмотря на успешное развитие и применение методов аналитического моделирования СМДП, основным методом исследования таких систем остается имитационное моделирование на ЭВМ с применением специализированных языков программирования. За всю историю развития вычислительной техники было создано более 300 языков моделирования дискретных процессов. Одним из первых языков описания СМДП, появившихся в начале 60-х годов, был язык блок-диаграмм, предложенный Гордоном, идеи которого оказались настолько плодотворны, что использовались во многих последующих разработках в нашей стране и за рубежом. На основе языка блок-диаграмм в 70-х годах был создан и в последующем адаптирован к ПК широко используемый в настоящее время для моделирования большого класса систем язык и система моделирования GPSS (GeneralPurposeSimulationSystem - Система моделирования общего назначения).

Применение имитационного моделирования целесообразно, если:

–проведение экспериментов с реальной системой невозможно или дорого;

–требуется изучить поведение системы при ускоренном или замедленном времени;

–    аналитическое описание поведения сложной системы невозможно;

– поведение системы зависит от случайных воздействий внешней среды;

– требуется выявить реакцию системы на непредвиденные ситуации;

– нужно проверить идеи по созданию или модернизации системы;

–требуется подготовить специалистов по управлению реальной системой.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами или другими словами — разработке симулятора (англ. Simulation modeling) исследуемой предметной области для проведения различных экспериментов.

Имитационное моделирование позволяет имитировать поведение системы во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны. С наступлением эпохи персональных компьютеров производство сложных и уникальных изделий, как правило, сопровождается компьютерным трёхмерным имитационным моделированием. Эта точная и относительно быстрая технология позволяет накопить все необходимые знания, оборудование и полуфабрикаты для будущего изделия до начала производства. Компьютерное 3D моделирование теперь не редкость даже для небольших компаний.

Области применения имитационного моделирования:

- бизнес процессы;

- боевые действия;

- динамика населения;

- дорожное движение;

- ИТ-инфраструктура;

- математическое моделирование исторических процессов;

- логистика;

- пешеходная динамика;

- производство;

- рынок и конкуренция;

- сервисные центры;

- цепочки поставок;

- уличное движение;

- управление проектами;

- экономика здравоохранения;

- экосистемы.

 

1.2. Место метода Монте-Карло в количественном анализе рисков инвестиционного проекта

 

При разработке и экспертизе инвестиционного проекта вопрос о его эффективности решается на основе анализа значений различных интегральных показателей — NPV, IRR, РВ, PI и т.д. Но все расчеты проводятся для базового варианта инвестиционного проекта, реализация которого, по мнению разработчиков, наиболее правдоподобна. В данной ситуации строится только одна модель прогнозных потоков денежных средств. И эта модель является моделью принятия решений в условиях определенности.

Предпосылка о полной определенности приводит к значительному упрощению действительности при моделировании. На практике нельзя быть полностью уверенным, что при реализации инвестиционного проекта все денежные потоки будут в точности соответствовать прогнозным. Наоборот, с момента реализации проекта на каждом этапе будет возникать все большее и большее расхождение между прогнозными и реальными денежными потоками. Может даже возникнуть ситуация, что задержки в оплате продукции, рост цен на импортные материалы в связи с изменением валютного курса, изменение налоговых ставок или другие негативные события приведут к полному краху проекта или, как минимум, к существенным дополнительным издержкам. Возникают вопросы: Как оценить устойчивость проекта к изменениям внешней среды? Как количественно измерить риск, связанный со всем проектом в целом? Применение имитационного моделирования по методу Монте-Карло в инвестиционных расчетах позволяет ответить на эти вопросы.

Следует отметить, что проведение риск-анализа по методу Монте-Карло не исключает осуществления на предыдущем этапе стандартных инвестиционных расчетов. Данный метод скорее является инструментом, который улучшает их результаты. Наличие хорошей исходной модели инвестиционного проекта – это необходимая база для проведения значимого, результативного имитационного моделирования. Результаты сравнительного анализа стандартных инвестиционных расчетов и риск-анализа по методу Монте-Карло приведены в табл. 1.1.

 

Таблица 1.1. Стандартные инвестиционные расчеты и риск-анализ по методу Монте-Карло

Критерии сравнения

Стандартные инвестиционные расчеты

Риск-анализ по методу Монте-Карло

Переменные

Детерминированные (значения точно определены)

Являются случайными величинами с заданными законами распределения

Модель

Модель денежных потоков

Модель денежных потоков

Процесс

Расчет одного прогнозного варианта (сценария) реализации проекта

Расчет большого количества случайных вариантов (сценариев) реализации проекта

Результат

Единственное значение интегрального показателя эффективности проекта

Распределение вероятностей интегрального показателя эффективности проекта


Примечание: литературный источник (собственная разработка).

Уже указывалось, что метод Монте-Карло, являясь одним из наиболее сложных методов количественного анализа рисков, преодолевает недостатки анализа чувствительности и анализа сценариев. Оба этих метода показывают воздействие определенного изменения в величине одной или нескольких переменных на показатель эффективности проекта (например, NPV).

Информация о работе Имитационное моделирование в экономике