Автор работы: Пользователь скрыл имя, 16 Октября 2013 в 13:03, реферат
При выборе метода выделения необходимо учитывать приоритет предъявляемых к нему требований, таких как высокий выход нужной нуклеиновой кислоты, быстрота метода, большая пропускная способность или высокое качество продукта. Существуют различные методы, позволяющие выделять нуклеиновые кислоты из широкого спектра образцов, но лишь малое их число пригодно для автоматизации. Присутствие загрязняющих веществ, например белков или карбогидратов, в таких комплексных смесях часто мешает реализовать необходимые реакции и методики.
Методы выделения нуклеиновых кислот можно разделить по основным физическим и биохимическим признакам на следующие классы:
жидкофазные методы;
твердофазные методы;
фракционирование ДНК и РНК
ВВЕДЕНИЕ 4
1 Нуклеиновые кислоты 5
1.1 Типы и распространение нуклеиновых кислот. 6
1.2 Общие свойства нуклеиновых кислот 7
1.2.1 Химическая структура. 7
1.2.2 Трехмерная структура. 7
1.2.3 Правило комплементарности 8
1.2.4 Правила Чаргаффа 8
1.3 Функция нуклеиновых кислот 10
1.3.1 Репликация и транскрипция. 10
1.3.2 Трансляция 11
1.3.3 Транспортные РНК и супрессия 13
1.4 Значение нуклеиновых кислот 14
2 Макромолекулярная структура ДНК 15
2.1 Выделение дезоксирибонуклеиновых кислот 17
2.1.1 Фракционирование ДНК 17
3 Макромолекулярная структура РНК 18
3.1 Выделение рибонуклеиновых кислот 19
3.1.1 Фракционирование РНК 19
4 Жидкофазные методы выделения нуклеиновых кислот 22
4.1 Классические методы выделения нуклеиновых кислот 22
4.2 Методы, позволяющие выделить ДНК и РНК одновременно 22
5 Твердофазные методы выделения нуклеиновых кислот 24
5.1 Основные принципы твердофазных методов 24
5.1.1 Метод выделения нуклеиновых кислот на стекле 24
5.1.2 Метод на основе магнитной сепарации 25
6 Другие методы выделения нуклеиновых кислот 28
6.1 Определение первичной структуры (секвенирование) нуклеиновых кислот. 28
6.3 Спектрофотометрический анализ 30
6.3 Амплификация нуклеиновых кислот 33
6.3.1 Методы амплификации нуклеиновых кислот 33
6.3.2 Форматы амплификации нуклеиновых кислот в режиме "реального времени": 33
6.3.3 Методы амплификации нуклеиновых кислот микроорганизмов I - IV групп 34
6.4 Метод количественного анализа нуклеиновых кислот 35
6.5 Сканирующая зондовая микроскопия нуклеиновых кислот 36
6.5.1 Основные методики препарирования образцов для зондовой микроскопии нуклеиновых кислот 36
6.5.2 Применение зондовой микроскопии для исследования структуры и свойств молекул нуклеиновых кислот и их комплексов 40
7 Заключение 41
СПИСОК ЛИТЕРАТУРЫ 42
Примечание. Н. д. — нет данных
Секвенирование нуклеиновых кислот позволяет определить в одном эксперименте последовательность нуклеотидов в ДНК или РНК, содержащих несколько сотен мономерных звеньев. Методы основаны на общем принципе - определении с помощью высокоразрешающего электрофореза в полиакриламидном геле с точностью до одного нуклеотида длины всех возможных фрагментов секвенируемого участка нуклеиновой кислоты, содержащих на одном конце одну и ту же последовательность нуклеотидов (гомогенный фрагмент), а на другом - один и тот же нуклеотид. Такие фрагменты получают двумя различными способами. В первом случае (метод Максама-Гилберта) гомогенный фрагмент ДНК или РНК, предварительно меченный радиоактивной меткой по одному из концов, расщепляют хим. агентами, специфичными к одному из четырех нуклеотидных остатков (A, G, С, Т или U); в случае РНК этот процесс осуществляют также специфическими рибонуклеазами. Расщепление ведут в таких ограничивающих условиях, когда в каждой молекуле нуклеиновой кислоты расщепляется только одна меж нуклеотидная связь рядом с нуклеотидом данного типа, независимо от его положения в цепи. Такую операцию проводят для каждого из четырех нуклеотидных остатков и по длинам образующихся радиоактивных фрагментов определяют положение каждого нуклеотида в цепи нуклеиновой кислоты.
В др. случае
(метод Сенгера) используют олиго- или
полинуклеотидную затравку (праймер) известной
длины, комплементарную определенному
участку нуклеиновой кислоты. Затравку
наращивают с помощью ДНК-полимеразы,
останавливая синтез на одном из четырех
типов нуклеотидных остатков с равной
вероятностью, независимо от его положения
в цепи. Для этого к смеси четырех прир.
субстратов ДНК-полимеразы добавляют
так называемый терминатор (обычно 2', 3'-ди-
Нуклеиновые кислоты определенным образом поглощают ультрафиолет. В спектрофотометрах образец подвергается действию ультрафиолета с длиной волны 260 нм, а фотодетектор измеряет количество света, прошедшего через образец. Чем больше света поглощено, тем выше концентрация нуклеиновой кислоты в образце.
При помощи закона Бугера — Ламберта — Бера возможно соотнести концентрация молекул, поглощающих излучение с количеством поглощенного света. На длине волны 260 нм средний коэффициент экстинкции для двуцепочечной ДНК составляет 0,020 (мкг/мл)−1 см−1, для одноцепочечной ДНК 0,027 (мкг/мл)−1 cm−1, для одноцепочечной РНК 0,025 (мкг/мл)−1 cm−1 и для коротких одноцепочечных олигонуклеотидов коэффициент экстинкции зависит от длины и соотношения азотистых оснований (около 0,030 (мкг/мл)−1 cm−1). Отсюда, оптическая плотность равная 1 соответствует концентрации двуцепочечной ДНК около 50 мкг/мл. Спектрофотометрический способ определения концентрации нуклеиновых кислот применяет при концентрациях до 2 OD. Более точные коэффициенты экстинкции требуются для определения концентрации олигонуклеотидов, и могут быть предсказаны при помощи модели ближайшего соседства.
Коэффициенты пересчета
Тип нуклеиновой кислоты |
Концентрация (мкг/мл) для 1 единицы A260 |
dsDNA (двуцепочечная ДНК) |
50 |
ssDNA (одноцепочечная ДНК) |
37 |
ssRNA (одноцепочечная РНК) |
40 |
Кюветы для анализа
Для определения концентрации образца, оптическую плотность, определённую при помощи стандартной кюветы с величиной оптического пути 10 мм, необходимо умножить на соответствующий коэффициент. Например, величина поглощения 0,9 оптических единицы двуцепочечной ДНК соответствует концентрации 45 мкг/мл.
Кюветы малого объема
Для многих биологических исследований требуется (ДНК-микрочип, количественная ПЦР) качественное и количественное определение малых объемов нуклеиновых кислот. Специальные нанофотометры позволяют определять концентрации образцов без помощи кюветы в субмикролитровых объемах, начиная от 0,3 мкл. Так как производятся измерения неразбавленного образца, воспроизводимость результатов очень высокая, а сами образцы могут быть использованы после анализа.
Чистота образца
Часто образцы нуклеиновых кислот содержат примеси белков и других органических веществ. Отношение поглощения на длинах волн 260 и 280 нм (A260/280) часто используют для оценки чистоты препарата. Чистая ДНК имеет соотношение A260/280 порядка 1,8, образец РНК без примесей A260/230 около 2.
Примеси белков и отношение 260:280
Для выявления примесей белков в растворах нуклеиновых кислот, анализируют соотношение поглощения растворов на длинах волн 260 и 280 нм, ароматические аминокислоты в составе белков поглощают на 280 нм. Однако вклад примесей белков в определение концентрации нуклеиновых кислот небольшой — для того, чтобы повлиять на соотношение 260:280 в растворе нуклеиновой кислоты, концентрация белка должна быть значительной.
Отношение 260:280 позволяет определить примесь нуклеиновых кислот в растворах белков и примесей белков в растворах нуклеиновых кислот:
% белка |
% нуклеиновой кислоты |
отношение 260:280 |
100 |
0 |
0,57 |
95 |
5 |
1,06 |
90 |
10 |
1,32 |
70 |
30 |
1,73 |
В случае
определения примеси белка в
растворе нуклеиновой кислоты отношение
260:280 имеет меньшую
% нуклеиновой кислоты |
% белка |
отношение 260:280 |
100 |
0 |
2,00 |
95 |
5 |
1,99 |
90 |
10 |
1,98 |
70 |
30 |
1,94 |
Такие
отличия обусловлены более
Другие загрязнения:
Процесс амплификации
основан на многократном увеличении
числа копий фрагмента
Методы амплификации нуклеиновых кислот: полимеразная цепная реакция (ПЦР), лигазная цепная реакция (ЛЦР), амплификация с удалением (вытеснением) цепи (SDA), транскрипционно-опосредованная амплификация (TMA), реакция амплификации на основе нуклеотидной последовательности нуклеиновых кислот (NASBA), реакция изотермальной транскрипционной амплификации (TAS), самоподдерживающаяся реакция репликации последовательностей (SSSR или 3SR), амплификация с использованием QB-репликазы, амплификации по типу катящегося кольца (RCA) и т.д.
Методы амплификации сигнала: сигнальная амплификация или метод "разветвленной" ДНК (bDNA assay), прямой гибридизационный анализ на основе РНК/ДНК-зондов и т.д.
Разновидности полимеразной цепной реакции: с "горячим" стартом (hot-start PCR), мультиплексная (мультипраймерная), гнездовая ("вложенная", nested PCR), "инвертированная", ассиметричная, метод молекулярных колоний, длинных фрагментов (Long-range PCR), с быстрой амплификацией концов кДНК (RACE-PCR), универсальная (broad-range PCR), с обратной транскрипцией (ОТ-ПЦР, RT-PCR), иммуно-ПЦР (immuno-PCR-IPCR), в режиме "реального времени" (Real-Time PCR), анализ "по конечной точке" (End-point PCR) и т.д.
- с применением
интеркалирующих
- использование
меченых флуоресцентными
Методы исследования, использующие продукты амплификации нуклеиновых кислот: секвенирование, ДНК-чипы, рестрикционный анализ.
Методы детекции продуктов амплификации нуклеиновых кислот:
- электрофоретический
(в агарозном или
- гибридизационно-ферментный;
- гибридизационно-флуоресцентный
(детекция продукта в режиме "реального
времени" или регистрация
Форматы исследования: качественный, количественный.
Методы амплификации нуклеиновых кислот микроорганизмов I - IV групп патогенности используют:
- как метод экспресс-
- как метод специфической
индикации патогенных
- как ускоренный
- для определения
- для таксономической
характеристики штаммов на
- для генотипирования штаммов с целью определения их происхождения;
- для прогнозирования
течения инфекционного
Основные
характеристики наборов реагентов,
используемых для проведения амплификации
нуклеиновых кислот микроорганизмов
I - IV групп патогенности: аналитическая
чувствительность, аналитическая специфичность,
диагностическая
По результатам
анализа выдают ответ о наличии
(качественный или количественный анализ)
в пробе специфических
Количественный анализ нуклеиновых кислот — определение концентрации ДНК или РНК в смеси или чистом препарате. Реакции с участием нуклеиновых кислот часто требуют точных сведений о количестве и чистоте препарата. Для определения концентрации нуклеиновой кислоты в растворе используют спектрофотометрический метод и УФ-флюоресценцию, если нуклеиновая кислота содержит краситель.
Среди
множества биологических
Информация о работе Методы выделения нуклеиновых кислот из биологического материала