Автор работы: Пользователь скрыл имя, 30 Июня 2014 в 19:59, шпаргалка
1.Физиология (предмет, задачи, история).
Физиология животных — один из важнейших разделов биологии и как наука представляет собой систему достоверных знаний о процессах жизнедеятельности и функциях организма, поведении животных. Предметом, или объектом, изучения физиологии животных является макроорганизм животного. Физиология изучает физиологические процессы и функции живого организма на уровне клеток, тканей, органов и организма в целом, в их взаимосвязи между собой и с учетом влияний условий окружающей среды, технологии содержания, а также поведенческие реакции животных.
53. Регуляция дыхания. Под регуляцией дыхания понимают поддержание оптимального содержания кислорода и диоксида углерода в альвеолярном воздухе и в крови за счет изменения частоты и глубины дыхательных движений. Частота и глубина дыхательных движений обусловлены ритмом и силой генерации импульсов в дыхательном центре, расположенном в продолговатом мозге, в зависимости от его возбудимости. Возбудимость определяется напряжением диоксида углерода в крови и потоком импульсов с рецепторных зон сосудов, дыхательных путей, мышц. Регуляция частоты дыхательных движений. Регуляция частоты дыхательных движений осуществляется центром дыхания, который включает в себя центры вдоха, выдоха и пневмотаксиса; центру вдоха принадлежит главная роль. В центре вдоха ритмически залпами рождаются импульсы в единицу времени (у крупного рогатого скота примерно 1 залп импульсов в 2 с), определяя частоту дыхания. Импульсы из центра вдоха поступают к вдыхательным мышцам и диафрагме, вызывая вдох такой продолжительности и глубины, который соответствует сложившимся условиям и характеризуется определенным объемом поступившего в легкие воздуха, силой сокращения вдыхательных мышц. Количество импульсов, рожденных в центре вдоха в единицу времени, зависит от его возбудимости: чем выше возбудимость, тем чаще рождаются импульсы, а значит, и чаще дыхательные движения. Регуляция смены вдоха выдохом, выдоха вдохом. Регуляция смены вдоха выдохом, выдоха вдохом осуществляется рефлекторно. Возбуждение, возникающее в центре вдоха, обеспечивает акт вдоха, который сопровождается растяжением легких и возбуждением механорецепторов легочных альвеол. Импульсы с рецепторов по афферентным волокнам блуждающих нервов поступают уже в центр выдоха и возбуждают его нейроны. Одновременно непосредственно через центр пневмотаксиса центр вдоха также возбуждает центр выдоха. Нейроны центра выдоха, возбуждаясь, по законам реципрокных отношений тормозят активность нейронов центра вдоха, и вдох прекращается. Центр выдоха посылает информацию к мышцам экспираторам, вызывает их сокращение, и осуществляется акт выдоха. Так происходит чередование вдоха и выдоха.
54. Обмен газов между альвеолярным воздухом и кровью. Транспорт кислорода и углекислого газа, содержание и напряжение газов и дыхания. Обмен газами между альвеолярным воздухом и газами крови. Обмен газов (кислорода и диоксида углерода) в легких между альвеолярным воздухом и кровью капилляров малого круга кровообращения осуществляется вследствие разности парциального давления этих газов. Концентрация кислорода в альвеолярном воздухе значительно выше, чем в венозной крови, движущейся по капиллярам. Кислород вследствие разности парциального давления (парциальное давление кислорода в альвеолах составляет 100 мм рт. ст., напряжение кислорода в венозной крови 40 мм рт. ст) по закону диффузии легко переходит из альвеол в
кровь, обогащая ее. Кровь становится артериальной. Концентрация диоксида углерода гораздо выше в венозной крови, чем в альвеолярном воздухе. Диоксид углерода вследствие разности напряжения его в крови (46 мм рт. ст.) и парциального его давления в альвеолярном воздухе (40 мм рт. ст.) по закону диффузии проникает из крови в альвеолы (рис. 38). Состав альвеолярного воздуха постоянен: около 14,5 % кислорода и 5,5 % Транспорт газов кровью. Кислород, проникнув в кровь, соединяется с гемоглобином эритроцитов и в виде оксигемоглобина транспортируется артериальной кровью до тканей. В артериальной крови содержится 16... 19 объемных процентов (об. %) кислорода (кислородная емкость крови) и 52...57 об. % диоксида углерода. Обмен газов между кровью и тканями. В тканях кислород освобождается из непрочного соединения с гемоглобином эритроцитов и по закону диффузии легко проникает в клетки, так как концентрация кислорода в артериальной крови значительно выше (напряжение кислорода равно ЮОммрт. ст.), чем в тканях. Здесь кислород используется на окисление органических соединений с образованием диоксида углерода. Концентрация диоксида углерода в тканях возрастает и становится значительно выше, чем в притекающей к ним крови. Напряжение диоксида углерода составляет 60 мм рт. ст. в тканях и 40 мм рт. ст. в артериальной крови, поэтому по закону диффузии он переходит из тканей в кровь. Она насыщается диоксидом углерода, т. е. становится венозной.
56. Прием корма (поиск, захват, жевание, увлажнение, глотание). Пищеварению предшествует акт приема корма. В нем участвуют следующие исполнительные органы: губы, язык, жевательные мышцы, челюсти, зубы, слюнные железы, глотка, пищевод, желудок. В этом процессе принимают участие кроме органов пищеварения органы движения. Система обеспечивает поиск и прием корма, удовлетворение потребностей организма в питательных, минеральных веществах, витаминах и воде. Поиск корма обусловлен чувством голода и связан со зрительной, обонятельной, вкусовой рецепциями, осязанием его языком и губами. Поедание корма состоит из захвата его языком, губами и зубами, пережевывания, увлажнения слюной, проглатывания и продвижения по пищеводу. Захваченная порция корма направляется на поверхность зубов и пережевывается. Жевание завершается формированием пищевого кома, который проглатывается, поступает через глотку в пищевод и по пищеводу в желудок. Число жевательных движений при пережевывании грубых кормов у крупного рогатого скота более 15тыс., у овец—12тыс. Крупный рогатый скот корм захватывает языком, направляет на резцы нижней челюсти, сдавливает между резцами нижней челюсти и зубной пластиной резцовой кости и рывком головы отрывает захваченную часть. Концентраты, корнеплоды и клубнеплоды из кормушки захватываются также губами и зубами. Захваченная порция корма пережевывается. Животное совершает 22...30 жевательных движений в зависимости от объема, структуры и состава порции корма. При приеме грубых кормов число жевательных движений больше. Время пережевывания одной порции составляет 20...50 с.
57. Смешивание и продвижение содержимого в желудке и кишечнике. Настоящее пищеварение принятого корма начинается в желудке. Пищеварение в желудке связано с секреторной деятельностью желудочных желез, двигательной активностью мышц желудка и деятельностью кардиального и пилорического сфинктеров его. Сократительная деятельность желудка. Она обеспечивает депонирование в желудке принятого корма, перемешивание его с желудочным соком, передвижение содержимого в желудке и изгнание порциями желудочного содержимого в двенадцатиперстную кишку. Эти процессы обеспечиваются благодаря особым свойствам гладких мышц желудка. Желудок осуществляет благодаря своим мышцам разнообразные сокращения: тонические, перистальтические и систолические. Поступление пищевых масс в желудок сопровождается его растяжением и слабыми перистальтическими сокращениями. Через некоторое время перистальтика желудка усиливается — начинается у кардиального сфинктера и заканчивается у пилорическо-го, обеспечивая перемешивание поверхностного слоя содержимого. Одновременно происходят тонические сокращения, способствующие пропитыванию содержимого желудочным соком. Кишечное пищеварение связано с секрецией поджелудочной железы, кишечных желез и печени, с движениями кишечника, деятельностью пилорического, илеоцекального и анальных сфинктеров. Различают пищеварение в тонком и толстом отделах кишечника. В тонком кишечнике происходит наиболее интенсивное переваривание пищевых масс, поступающих из желудка. Расщепление белков, жиров и углеводов осуществляется под действием трех пищеварительных соков: поджелудочного сока, желчи и кишечного сока. Выводные протоки печени (желчный проток) и поджелудочной железы впадают в 12-перстную кишку. Сократительная деятельность тонкого кишечника. В тонком кишечнике пищевые массы подвергаются не только химической, но и механической обработке. Благодаря движениям кишечника они перемешиваются с пищеварительными соками и перемещаются в направлении толстого кишечника. Различают следующие виды сокращения кишечника — тонические, перистальтические, ритмические, маятникообразные. Содержимое тонкого кишечника называется химус.
58. Секреторная деятельность слюнных и желудочных желез.
Секреторная деятельность желудочных желез. В слизистой оболочке стенки желудка находится большое количество желез, состоящих из трех видов клеток — главных, обкладочных и добавочных, три секреторные зоны — кардиальная с железами из добавочных клеток, фундальная с железами из обкладочных, главных и добавочных клеток, пилорическая с железами из главных и добавочных клеток. Желудочные железы основной фундальной зоны вырабатывают кислый желудочный сок . Желудочный сок содержит воду, свободную и связанную соляную кислоту (продуцируют обкладочные клетки), неорганические и органические вещества — ферменты, белки, аминокислоты и другие, слизь (продуцируют добавочные клетки). Основные ферменты желудочного сока — пепсины, реннин, желудочная липаза — продуцируются главными клетками. Пепсины расщепляют белки до пептидов, алъбумоз и пептонов, частично аминокислот, последних образуется мало. Действие пепсинов возможно только в кислой среде; они вырабатываются в форме пепсиногенов — неактивной форме и активируются соляной кислотой до пепсинов. Секреторная функция слюнных желез. В ротовую полость у животных открываются протоки следующих слюнных желез: парных околоушных, подъязычных и подчелюстных, а также масса мелких нижних, верхних и задних щечных, губных. Секрет слюнных желез — слюна. Слюна— жидкий секрет щелочной реакции. Смачивает пищу и участвует в ее химическом превращении за счет гликолитических ферментов — амилазы и глюкозидазы (мальтазы). Слюна содержит воду (99 %), неорганические и органические вещества (муцин, ферменты амилаза и глюкозидаза). В ротовой полости химическому превращению подвергаются углеводы — крахмал, мальтоза. Превращается небольшое количество углеводов, так как пища находится во рту непродолжительное время. Под действием фермента амилазы крахмал расщепляется до мальтозы. Под действием глюкозидазы мальтоза гидролизуется до глюкозы, которая частично всасывается уже в ротовой полости. Чем дольше пережевывается корм, тем больше образуется глюкозы и больше ее всасывается. Слюнные железы возбуждаются и выделяют слюну уже в первую минуту после начала поедания корма и продолжают свою деятельность в течение всего приема корма и ротового пищеварения.
59. Характеристика
деятельности поджелудочной
60.Пищеварительные
ферменты, их свойства, условия, необходимые
для проявления их
Выделены три группы ферментов: протеолитические — расщепляют белки; гликолитические — расщепляют углеводы; липолити-ческие — расщепляют жиры.
61. Физико-химические
превращение питательных