Математикалық ұғымдар және оларды қалыптастыру процесі

Автор работы: Пользователь скрыл имя, 12 Сентября 2013 в 09:43, курсовая работа

Краткое описание

Математика - қазіргі уақытта көптеген салаларына дендеп еніп, абстракциялык сипатқа ие болған, бір кездері адпмнын әр тұрлі қызмет саласындағы практикалык кажеггіліктерінен туындаған, көне ғылымдардың бірі.
Математика нені зерттейді және оның бізді қоршаған әлеммен қатынасы қандай? Математика, басқа ғылымдар сиякты бізді қоршаған әлемді зерттейді және де ол зерттейтін нақты әлемнің құбылыстары өздерінің материалдық табиғатымен емес, тек қана формальды құрылымдық қасиеттерімен, әсіресе олармен байланысты сандык қатынастар және кеңістік формаларымсн анықталады.

Содержание

Кіріспе


І-тарау Математиканың негізгі ұғымдары
Математикалық ұғымдар
Ұғымның мағынасы мен көлемі, ұғымның анықтамасы
П-тарау Математикалық ұғымдар және оларды қалыптастыру процесі
2.1 Математикалық ұғымдар және оларды қалыптастыру
процесі, Анықталатын жэне анықталмайтын ұғымдар
2.2 Ұғымдардың анықталу тәсілдері
2.3 Натурал сан мен нөл ұғымдары
Сан ұғымын кеңейту мәселесі
Нақты дүние қасиеттерінің шама ұғымы арқылы иеленуі,
шама және оны өлшеу ұғымдары
Қорытынды
Әдебиеттер тізімі

Прикрепленные файлы: 1 файл

Дип.-Математикалық-ұғымдар.doc

— 511.50 Кб (Скачать документ)

Геометрия курсы  пән ретінде өзінің бүкіл өмір сүру кезеңінде барлық дүниежүзінің елдерінде евклид аксиомалары жүйесі негізінде құрылған. Көптеген ғалымдардың математиканы дамыту барысында Евклид геометриясының логикалык күрылымын жетілдірумен айналысуы түсінікті де. Бастапқыда мұндай жетілдірулерді кейбір ғалымдар (Дж. Пеано, М. Пиери, М.Паш, В.Ф.Каган) евклид геометриясының жекеленген бөліктеріне енгізе

42

 

бастады. Кейінірек  Давид Гильберт (1862-1943) геометрия  аксиомаларының толық жүйесін құруды жүзеге асырды. Атап айтқанда Д.Гильберттщ "I еометрия негіздемелері" деп аталатын жүмысы дүние жүзінің көптеген елдерінде мектеп геометриясы курсын құруға негіз болды.

1918 ж. белгілі  математик Г.Вейльдің (1885-1955 ж.) евклид  геометриясының "векторлық" деп  аталатын негіздемесі ұсынылды. Вейль аксиоматикасы евклидтік (нүктелік) кеңістіктің теориясын сызықтық алгебра тіліне аударады. Бұл теоремалардың дәлелдемелерін алгоритмдеуді жүзеге асыруға мүмкіндік берді және геометрияны оқып-үйренудің жаңа "патшалық жолын" ашты. Н. Бурбакидің жүмыстарына байланысты математиканы "алгебраизациялау" қозғалысы пайда болды.

Бұл Вейль аксиоматикасы негізінде құрылған п өлшемді геометрияның ерекше ролін мүмкін болатын ғылыми қолданулар тарапынан ғана емес, сонымен қатар орта мектептің оку пәні ретіндегі Евклид - Гильберт геометриясын осы геометриямен ауыстыру мүмкіндігі тарапынан бағалауға алып келді.

Оқушыларын  стерометрия курсын (планометрияны  жалпыл


Информация о работе Математикалық ұғымдар және оларды қалыптастыру процесі