Химия окружающей среды

Автор работы: Пользователь скрыл имя, 06 Апреля 2014 в 23:45, реферат

Краткое описание

В основе процессов, обусловливающих современное состояние биосферы, лежат химические превращения веществ. Химические аспекты проблемы охраны окружающей среды формируют новый раздел современной химии, названный химией окружающей среды. Это направление рассматривает химические процессы, протекающие в биосфере, процессы миграции и трансформации химических соединений природного и антропогенного происхождения в атмосфере, литосфере и гидросфере, дает характеристику основных химических загрязнителей и способов определения уровня загрязнения, разрабатывает физико-химические методы борьбы с загрязнением окружающей среды и др.

Прикрепленные файлы: 1 файл

Seminary_Khimia_okruzhayuschey_sredy.doc

— 3.28 Мб (Скачать документ)

Как рассчитывать водородный показатель. Слабые кислоты (а именно такие кислоты и присутствуют в природных водах) реагируют с водой с образованием иона Н3О+, причем, в отличие от сильных кислот, равновесие соответствующей реакции смещено влево:

 

НА + Н2О ó  A –+ H3O+

 к –та 1 осн.2  осн. 1 к –та 2

Чтобы рассчитать рН в растворе слабой кислоты, нужно воспользоваться формулой:

рН = 0,5* (pKa + С)

где С — молярная концентрация кислоты.

Слабые основания (а именно такие основания и присутствуют в природных водах) реагируют с водой с образованием иона ОН–, причем, как и в случае слабых кислот равновесие соответствующей реакции смещено влево:

 

В+ + Н2О Бó НВ + ОН–

 

Чтобы рассчитать рН в растворе слабого основания, нужно воспользоваться формулой

рН = 14  – 0,5 –(рКb + C),

 

где С— молярная концентрация основания.

Многие частицы (например, ион НСО3–) могут вести себя и как кислоты, и как основания:

НСО3– + Н2О ó Н3О+ + СО32–

к –та1     осн.2    к –та 2     осн. 1

 

НСО3– + Н2О ó ОН– + Н2О + СО2.

                                осн.1     к –та2     осн.2       к –та1

 

Чтобы узнать, как будет вести себя такая частица, нужно сравнить ее константу кислотности и константу основности. В данном случае:

 

pКa(НСО3– ) = 10,35, а

pКb(НСО3– ) = 14 –6,35 = 7,65. рКa>рКb,

 

следовательно Кa<Кb, то есть константа основности больше константы кислотности. Это значит, что гидрокарбонат–ион при реакции с водой будет вести себя как основание, то есть в водном растворе гидрокарбонатов среда будет основной, и его рН нужно рассчитывать как рН раствора основания.

 

 

рН – буферные системы

В природных водах, как правило, присутствуют одновременно кислоты и сопряженные им основания. Например, в большинстве водоемов одновременно растворен углекислый газ и сопряженное ему основание  гидрокарбонат–ион. Такие системы способны поддерживать более или менее постоянное значение рН при внесении в них как сильных кислот (кислот, более сильных, чем растворенная кислота), так и сильных оснований (оснований, более сильных, чем растворенное основание) и называются рН –буферными системами.

Механизм буферного действия рН–буферной системы достаточно прост: она реагирует как с сильными кислотами, так и с сильными основаниями, превращая их в слабые. Например:

 

НСО3– + Н3O+ = 2Н2О + СО2;

Н2О + СО2 + В– = НСО3– + НВ.

 

Наличие в природных водах буферных систем — одно из важнейших условий существования жизни. Если бы буферных систем не было, продукты жизнедеятельности организмов легко превратили бы все природные воды в разбавленные кислоты. При различных рН кислота (основание) распределяется между протонированной (кислотной) и депротонированной (основной) формами. Чтобы рассчитать соотношение протонированной и депротонированной формы, можно воспользоваться уравнением:

 

lg([HA]/[A–]) = pKa –PH,

 

где рКа — отрицательный логарифм константы кислотности.

Как пример, на рисунке приведено распределение сероводорода по формам в зависимости от рН.

Добавление в буферную систему с определенным рН небольших количеств кислоты или основания приводит к распределению кислоты (основания) между протонированной и депротонированной формами. Для грубых оценок можно принять, что при рН<рKa преобладает кислота (протонированная форма), а при рН>рKa — сопряженное ей основание (депротонированная форма). Как видно из примера на рисунке, если сероводород  (pKa (H2S)=7, pKa (HS–) = 12,3) попадает в буферную среду с рН<7, то он существует преимущественно в форме H2S, при 7<рН<12,3 — в форме HS–, при рН>12,3 — в форме S2–.

 

рН – буферная емкость любого раствора (в том числе и природной воды) ограничена: как только прореагирует все растворенное основание или растворенная кислота, рН уже не будет удерживаться. Отсюда вывод: чтобы в водоеме не происходило фатальных изменений, количество кислоты, которое в него попадает, должно быть меньше, чем его буферная емкость (обычно условие еще более жесткое: рН не может меняться более, чем на единицу).

Нужно также заметить, что буферными свойствами обладает не только вода, но и водоем в целом. Причем буферная емкость водоема может быть больше, чем буферная емкость содержащейся в нем воды, поскольку с кислотами и основаниями могут также реагировать вещества, содержащиеся во взвесях, донных отложениях и т.д.

 

 

рН природных вод

 

Существует несколько буферных систем, поддерживающих определенный рН природных вод. Ниже мы разберем наиболее важные.

Сернокислотная буферная система (H2SO4/HSO4–/SO42–). Строго говоря, сернокислотную систему нельзя называть буферной, поскольку она поддерживает постоянство рН только при добавлении кислот. При попадании в водоем оснований серная кислота, будучи сильной, превращается в очень слабое основание, поэтому концентрация ионов Н3О+ резко снижается. Сернокислотная система присутствует в водоемах, которые, с одной стороны, не имеют контакта с горными породами или контактируют с породами, устойчивыми к действию кислот (например, гранитами), с другой  — содержат органику и некоторое количество кислорода. Сера, содержащаяся в остатках организмов, окисляется до серной кислоты, которую нечем нейтрализовать. Источником серной кислоты может быть также окисление пирита или кислотные дожди. рН сернокислотной системы от 2 до 4. Сернокислотная система существует в верховых болотах, в водоемах, имеющих контакт с залежами пирита и в водоемах, находящихся в гранитном ложе, в которые попадают кислотные дожди.

Гуматная буферная система. Основана на гумусовых кислотах и гуматах. Буферная емкость такой системы невелика, поскольку, с одной стороны, в большинстве водоемов мала концентрация гумусовых кислот, а с другой  — в гумусовых кислотах относительно невелико содержание кислотных групп (не больше 10 ммоль/г). Однако из–за того, что гумусовые кислоты содержат кислотные группы с самой разной силой, рН гуматной буферной системы может колебаться от 3,5 (в высокоцветных маломинерализованных водах) до 9 (в минерализованных водах, где преобладают гуматы). Существует в болотах и болотных озерах, иногда — в илистых водоемах.

Углекислотно –гидрокарбонатная  буферная  система (H2O+CO2/HCO3–). Наиболее распространенная буферная система. Поддерживает рН от 5,5 до 8,3 (Рис.; раствор СО2 в контакте с воздухом имеет рН 5,5). Буферная емкость этой системы по отношению к сильным кислотам определяется концентрацией гидрокарбоната, которая ограничена из –за того, что ионы Са2+ и Mg2+, содержащиеся в природной воде, выводят гидрокарбонат –ионы из раствора в форме карбонатов. Буферная емкость по отношению к основаниям ограничена растворимостью углекислого газа. Углекислотно – гидрокарбонатная буферная система существует во всех водоемах, воды которых имеют (или имели в ходе своей миграции) контакт с горными породами, особенно известняками. Исключением могут быть высокоцветные воды, где преобладает гуматная буферная система. рН морской воды также определяется гидрокарбонатной буферной системой.

Гидрокарбонатно –карбонатная буферная система (НСО3-/СО32–). В тех редких случаях, когда противоионами к карбонатам или гидрокарбонатам выступают ионы натрия или калия (например, в содовых озерах Кулундинской степи), возможно существование гидрокарбонатно –карбонатной буферной системы, рН этой системы колеблется от ~9 (рН свободного гидрокарбоната без примеси углекислого газа) до 11,5. Выше рН гидрокарбонатно –карбонатной буферной системы не поднимается, так как тогда карбонаты начинают поглощать углекислый газ из воздуха.

 

Окислительно –восстановительные реакции

 

В природных водах могут присутствовать окислители и восстановители, поэтому природная вода обладает окислительно-восстановительными свойствами, и в ней могут протекать окислительно-восстановительные реакции. Характеристикой окислительно - восстановительных свойств природной воды является ее окислительно - восстановительный потенциал (Е). Чем выше окислительно-восстановительный потенциал, тем более высокими окислительными свойствами обладает данный раствор. Для большинства систем окислительно-восстановительный потенциал зависит от рН. Графически такая зависимость изображается диаграммами Пурбе (Рис.).

Вода сама по себе может выступать как окислитель (восстанавливается с выделением водорода) и как восстановитель (окисляется с выделением кислорода), поэтому окислительно –восстановительный потенциал водных растворов ограничен (см. Рис.). Реально область устойчивости водных растворов несколько шире по кинетическим причинам (сильные окислители/восстановители с потенциалами, близкими к границам устойчивости воды, восстанавливаются /окисляются очень медленно).

Окислительно–восстановительный  потенциал  определяет направление протекания окислительно –восстановительных процессов в природной воде. Как и рН, он задается главными компонентами природных вод (а именно, потенциал – определяющими компонентами). На Рис. 38 отмечены области рН и Е природных вод разного происхождения. Наряду с рН, потенциал определяет формы существования подчиненных компонентов. Преобладающие формы подчиненных компонентов также можно нанести на диаграмму Пурбе (Рис. 39, 40, 43 и др.). Если на диаграмму Пурбе для определенного элемента наложить область значений рН и Е в водоеме, то можно понять, какая форма элемента будет в нем преобладать.

Следует, однако, помнить, что, в отличие от кислотно – основных, окислительно –восстановительные реакция могут протекать медленно, поэтому в растворе могут одновременно присутствовать окислители и восстановители, которые по диаграммам Пурбе должны прореагировать. Например, сульфат – ион способен неограниченно долго существовать при низких значениях Е, в области существования сероводорода. Объясняется это тем, что сульфат – ион восстанавливается крайне медленно. Реально в окружающей среде его могут восстановить только сульфатредуцирующие бактерии — без живых организмов сульфаты не восстанавливаются.

Потенциал – определяющие компоненты природных вод

Основные компоненты, определяющие окислительно – восстановительный потенциал природной воды, следующие: растворенный кислород и соединения железа (III) (в присутствии этих компонентов среда считается окислительной), а также органические вещества, сероводород и соединения железа (II) (в присутствии этих компонентов среда считается восстановительной).

Кислород. Если потенциал природной воды определяется растворенным кислородом, то он лежит в районе верхней границы устойчивости водных растворов. Кислород является потенциал –определяющим компонентом в водах, имеющих хороший контакт с атмосферой. Причем, поскольку кислород в воде расходуется, а его диффузия происходит достаточно медленно, то чем хуже происходит перемешивание, тем ниже потенциал природной воды. Если в воде, даже находящейся в контакте с воздухом, растворено много органических веществ или сероводорода, растворенный кислород полностью восстанавливается до воды и тогда потенциал определяется органическими веществами или сероводородом.

Органические вещества. В случае, если в воде растворено или взвешено большое количество органических веществ, они становятся потенциал – определяющим компонентом. Значение Е такой воды может колебаться в весьма широких пределах (нижние 3/4 всей области устойчивости воды), причем Е зависит от свойств конкретных органических веществ. Наиболее низок потенциал, задаваемый органическими веществами в донных отложениях, куда затруднен

Соединения серы. При разложении органических веществ в воду может переходить сероводород. Если его растворено много, он определяет потенциал природной воды. Потенциал таких вод лежит у нижней границы устойчивости водных растворов, в области существования сероводорода и сульфидов (Рис.), причем, в зависимости от рН, H2S существует в форме кислоты или в форме HS– (Рис.). Сульфат – ион не определяет потенциал, поскольку его восстановление кинетически заторможено. В редких случаях потенциал может определять мелкодисперсная сера. SO2, попав в воду, выступает преимущественно как восстановитель, однако эта форма в водных растворах термодинамически неустойчива.

Соединения железа. Иногда потенциал природной воды определяют соединения железа (Рис.). Если в воде присутствуют ионы Fe3+, то ее потенциал лежит у верхней границы устойчивости воды. Однако, поскольку гидратированный ион [Fe(H2O)6]3+ — довольно сильная кислота (по Бренстеду –Лоури), этот ион (обычно его обозначают Fe3+) может присутствовать только в сильнокислых средах. В нейтральных и основных средах Е может определяться нерастворимым Fe(OH)3, однако такая ситуация редка, поскольку восстановление Fe(OH)3 происходит очень медленно.

Ион Fe2+ может определять низкий потенциал природной воды даже в слабощелочной области. В частности, этот ион может существовать в гидрокарбонатной буферной системе. Fe(OH)2 иногда тоже может служить потенциал – определяющим компонентом, поскольку его окисление происходит существенно быстрее, чем восстановление Fe(OH)3.

В случае, если концентрация соединений железа мала по сравнению с концентрацией 02 или органических веществ, соединения железа перестают определять потенциал, и сами переходят в форму, наиболее устойчивую при условиях, задаваемых другими компонентами. В частности, если красные, то есть содержащие Fe(III), глины находятся в контакте с органическими веществами (например, если на этих глинах лежит болотная почва или торф), то железо восстанавливается до Fe(II), например:

 

HFeSiO4 + «С»+ СО2 + Н2О  –» Fe2+ + НСО3– + Si02.

 

Если раствор, содержащий железо (II), выходит на поверхность, то железо (II) окисляется кислородом воздуха:

 

4Fe2+ + О2 + 10Н2О = 4Fe(OH)3 + 8H+.

 

Со временем Fe(OH)3 теряет воду и образуется болотная руда (Fe2O3):

 

2Fe(OH)3 = Fe2O3 + ЗН2О.

 

Осадкообразование и адсорбция

Ионы, содержащиеся в природной воде, могут образовывать друг с другом нерастворимые соединения. Растворимость того или иного ионного соединения характеризуется его произведением растворимости (ПР). Для соединения АаВb, диссоциирующего:

 

АаВbó аАх+ + bB(a/b-x)–

произведение растворимости записывается как

 

ПР=[ Ах+]а * [ B(a/b-x)– ]b

 

где [Ах+] и [ B(a/b-x)– ]  равновесные молярные концентрации соответствующих ионов. Произведение растворимости зависти только от природы соли и от температуры, и не зависит от состава раствора

Если концентрации ионов в растворе оказывается такой, что их произведение в соответствующих степенях превышает ПР, то образуется осадок. Например, для гидроксида железа (III)

 

ПР(Fе(ОН)3) = [Fe3+] * [OH–]3 = 6*10–38.

 

Это означает, что при рН 3, что соответствует [ОН–] =10(рН–14) = 10–11 М, концентрация иона [Fe3+] не может превышать

 

[Fе3+] < ПР(Fе(ОH)3)/[ОН–]3 = 6 –10–38 * (10–11)3 = 6 *10–5М.

 

Образование осадка может также происходить при дегидратации гидроксидов — промежуточных продуктов кислотно – основных реакций. В природных средах могут терять воду гидроксиды переходных металлов, HVO3, H2MoO4, H2WO4, H4SiO4:

Информация о работе Химия окружающей среды