Автор работы: Пользователь скрыл имя, 06 Апреля 2014 в 23:45, реферат
В основе процессов, обусловливающих современное состояние биосферы, лежат химические превращения веществ. Химические аспекты проблемы охраны окружающей среды формируют новый раздел современной химии, названный химией окружающей среды. Это направление рассматривает химические процессы, протекающие в биосфере, процессы миграции и трансформации химических соединений природного и антропогенного происхождения в атмосфере, литосфере и гидросфере, дает характеристику основных химических загрязнителей и способов определения уровня загрязнения, разрабатывает физико-химические методы борьбы с загрязнением окружающей среды и др.
4Fe2+ + О2 + 10НСО3 – + Н2О = 4Fe(OH)3 + 10СО2.
Часто химические реакции начинаются при концентрировании воды путем испарения, как это происходит в океанах или бессточных озерах. Например, при увеличении концентрации, ионы кальция начинают реагировать с гидрокарбонат –ионами:
Са2+ + 2HCО3 – = CaCO3 + Н2О + СО2
Поэтому в большинстве рек основную массу ионов составляют гидрокарбонат –ионы и ионы кальция и магния, а в океанах и бессточных озерах их доля в общей массе ионов невелика.
Поглощение живыми организмами. Растворенные и взвешенные вещества могут поглощаться живыми организмами. Дальше у таких веществ два пути: перебраться вместе с организмом на сушу, или после гибели организма оказаться в донных отложениях. Причем и в том, и в другом случае вещество может пройти через длинную пищевую цепь. Например, тяжелые металлы сначала накапливаются в рачках –фильтрантах. Часть рачков отмирает, и их тела, вместе с накопленными металлами оседают на дно. Другую часть поедают рыбы, получая вместе с рачками тяжелые металлы. Эти рыбы могут также осесть на дно после смерти, а могут быть съедены птицами. Во втором случае содержавшиеся в рыбе тяжелые металлы покидают водоем. Однако доля тяжелых металлов, покинувших водоем таким путем гораздо меньше, чем доля тяжелых металлов, осевших на дно. Живые организмы могут также перевести вещество в летучие формы. Например, денитрифицирующие бактерии переводят нитрат – ионы в N2.
Схема стоков растворенных в воде веществ приведена на рисунке.
Главные компоненты природных вод
Главными компонентами мы будем называть те компоненты природных вод, которые определяют основные химические процессы в них26. К главным компонентам относят главные ионы (то есть ионы, присутствующие в воде в наибольших концентрациях), они же макрокомпоненты. Также к главным компонентами мы будем относить вещества, концентрация которых невелика, но поддерживается более или менее постоянной за счет обмена с атмосферой (СО2, О3) или подстилающими породами. Кроме того, к главным компонентам мы будем относить кинетически устойчивые продукты разложения органических остатков — гумусовые кислоты, а также серусодержащие соединения.
Главные ионы
Основную массу растворенных веществ составляют четыре катиона (Са2+, Mg2+, Na+, К+) и три аниона (НСО3 –, Сl – и SO42 –). Эти семь ионов еще называют главными ионами, а сумму катионов Са2+ и Mg2+ — общей жесткостью.
Гидрокарбонаты и жесткость. Как правило, в пресных водоемах больше всего ионов кальция, магния и гидрокарбонатов. Основной их источник — выщелачивание горных пород раствором углекислого газа в природной воде. В первую очередь выщелачиваются карбонатные породы — известняки и доломиты:
(Ca,Mg)CO3 + Н20 + СО2 –> (Ca,Mg)2+ + НС03 –
Существенно хуже выщелачиваются полевые шпаты (компоненты изверженных горных пород):
CaSi2Al2O8 + 2Н2О + 2СО2 = Са2+ + 2НСО3 – + 2HAlSiO4.
анортит каолинит
Могут выщелачиваться и другие горные породы, но основной источник кальция и магния — известняки и доломиты. Кроме того, около 7% магния попадает в водоемы с дождевой водой, куда эти ионы, в свою очередь, выносятся ветром с поверхности океана.
Поскольку магний выщелачивается хуже кальция (в первую очередь это относится к карбонатным породам), его молярная концентрация в пресной воде обычно в 4 –5 раз меньше молярной концентрации кальция.
При концентрировании воды гидрокарбонаты реагируют с ионами кальция и магния, поэтому в океанах или бессточных озерах с соленой водой гидрокарбонатов и кальция достаточно мало.
В основном, именно гидрокарбонат –ионы определяют рН природных вод и нейтрализуют попадающие в водоем кислоты (в первую очередь, серную). В гидрокарбонат –ионах в природных водах сосредоточены основные запасы углекислого газа, необходимого растениям для фотосинтеза. Ионы кальция необходимы многим организмам для построения скелета и осуществления мышечных сокращений. Ионы магния используются водной растительностью для построения фотосинтетического аппарата. Из пресных вод организмы поглощают лишь небольшую долю кальция и магния, а из морских вод кальций (вместе с гидрокарбонатами) поглощается достаточно активно, поскольку многие организмы строят из карбоната кальция свой внешний скелет (раковины и т.п.).
Хлориды. Основной источник хлоридов в пресных водах — атмосферные осадки, в которые хлориды попадают с капельками морской воды, уносящимися ветром во время штормов. В среднем 64% всех хлоридов, находящихся в пресных водоемах России, попали туда с атмосферными осадками.
Еще 29% хлоридов попадает в водоемы в результате деятельности человека. Дело в том, что хлориды в достаточно высокой концентрации (0,1 –0,2 М) содержатся в моче человека и животных. Эта концентрации примерно в 1000 раз превышает концентрацию хлоридов в дождевой воде. Кроме того, человек использует поваренную соль, добываемую из морской воды или подземных залежей, для различных технических целей (от посыпания дорог зимой до мытья посуды). Эта соль смывается в канализацию и рано или поздно оказывается в реках. Особенно велик сброс хлоридов в реки, протекающие в крупных городах. Так, в Москве – реке выше города концентрация хлоридов колеблется в диапазоне 0,3 –0,6 мМ, а ниже — 1,2 –3,1 мМ.
Третий, наименее мощный источник хлоридов в пресных водоемах – растворение подземных отложений солей. Этим путем хлориды попадают в реки Каму, Лену и некоторые другие водоемы. Из воды хлориды практически не выводятся, лишь частично поглощаясь живыми организмами.
Натрий. У натрия существует несколько примерно равнозначных по мощности источников. В первую очередь, как и в случае хлора, натрий привносится с атмосферными осадками (37%). Однако, в отличие от хлора, большое значение имеют также выщелачивание различных минералов — пироксенов, амфиболов, слюд, полевых шпатов (35%) и вымывание атмосферной пыли (29%). Оставшиеся 26% попадают в водоемы Европейской части России в результате деятельности человека. Попав в природную воду, натрий из нее практически не выводится, лишь частично поглощаясь живыми организмами.
Калий. Несмотря на то, что химически натрий весьма сходен с калием, их источники в гидросфере сильно различаются. Во –первых, калий гораздо хуже выщелачивается из горных пород, а во–вторых, активно поглощается биосферой (в первую очередь, растительностью).
В пресных водоемах массовая концентрация калия в среднем в 4 раза меньше, чем концентрация натрия. В океанских водах — в 28 раз.
70% калия попадает в водоемы с атмосферной пылью (в основном он содержится в золе сгоревших деревьев и частицах почвы). 23% — за счет выщелачивания горных пород и только 2% — за счет деятельности человека (в основном, это сток калийных удобрений). Доля калия, принесенного из океанов, также невелика — около 5%.
Попав в воду, калий активно поглощается живыми организмами. Кроме того, обладая гораздо большим сродством к силикатным породам, чем натрий, калий сильнее сорбируется на взвешенных частицах силикатных минералов (в первую очередь, глинах).
Сульфаты. Сульфаты попадают в водоемы в первую очередь из атмосферы. Серусодержащие вещества, попадающие в атмосферу как результат жизнедеятельности организмов, а также разложения или горения их остатков, довольно быстро окисляются до серной кислоты, которая и проливается с дождями, реагируя впоследствии с горными породами. Человек также выбрасывает в атмосферу серусодержащие соединения (в первую очередь S02), поэтому вокруг крупных городов и промышленных центров содержание сульфатов в осадках и водоемах повышено.
С атмосферными осадками в пресные воды попадает 63% сульфатов, причем 20% — прямой результат деятельности человека, 3% приносится с океанов ветром, а остальные 40% — следствие естественных процессов на суше. Континентальный сток сульфатов формируется за счет разложения органических остатков непосредственно в водоемах (в первую очередь, в торфяных болотах), окисления сульфидов (в первую очередь отложений пирита FeS2 и сульфида железа FeS, образовавшегося в зоне контакта железосодержащих вод с сероводородом) и растворения подземных залежей гипса CaSO4.
Сульфаты частично поглощаются живыми организмами. Они восстанавливают серу до степени окисления –2 и встраивают ее в структуру белков. При концентрировании вод, содержащих сульфаты и ионы кальция, выпадает сульфат кальция:
Са2+ + SO42 – = CaSO4
что способствует выведению сульфатов в донные отложения. Сульфаты также могут восстановиться в донных отложениях до сульфидов или сероводорода.
Общая минерализация и ионная сила природной воды
Главные ионы в основном формируют ионный состав природной воды. Общее содержание солей в природной воде характеризуют таким параметром, как общая минерализация. Общая минерализация — это массовая концентрация всех растворенных в природной воде солей, при условии, что гидрокарбонаты превращаются в карбонаты. Обычно общую минерализацию определяют следующим образом: упаривают 1 л отфильтрованной воды, высушивают остаток при 105°С и взвешивают его. Общая минерализация природных вод колеблется от 10 –15 мг/л в дождевых водах, тундровых озерах и водах верховых болот до 200 г/л в бессточном Мертвом море и заливе Кара –Богаз –Гол.
Растворенные в воде соли вызывают осмотические явления, влияют на конфигурацию белков, а также скорости и равновесия ионных реакций. Это влияние обусловлено электростатическими взаимодействиями с участием ионов. Влияние электростатических взаимодействий на химические и биологические процессы в растворе определяется его ионной силой (измеряется в моль/л), вычисляемой по формуле:
где Z — ион, z — его заряд, [Z] — молярная концентрация иона Z.
Для природной воды ионную силу можно приближенно вычислить по формуле:
I= 0,5 • ([Na+] + [К+] + [Са2+] . 4 + [Mg2+] . 4 + [HCO3 –] + [Сl –] + [SO42 –] . 4),
где [Na+] – молярная (моль/л) концентрация ионов Na+ и т.д.
Поскольку ионная сила зависит от квадрата заряда иона, в растворе сульфата магния (MgSO4) она будет в 4 раза больше, чем в растворе хлорида натрия (NaCl) той же молярной концентрации.
Влияние растворенных солей на конфигурацию белков. Белки состоят из сложных молекул и выполняют множество жизненно важных функций. Свойства молекул белков зависят от конфигурации, то есть от взаимного расположения тех или иных фрагментов молекулы в пространстве. Кроме того, разные участки белковой молекулы могут быть заряжены. Эти заряды притягиваются, либо отталкиваются друг от друга, поддерживая, таким образом, определенную конфигурацию молекулы. Если ионы, находящиеся в растворе, скомпенсируют заряды на молекуле белка, то заряженные фрагменты перестанут притягиваться (отталкиваться). Молекула белка изменит конфигурацию, (как говорят, белок свернется) и потеряет свои функции. Из –за того, что в присутствии соли белок сворачивается лучше, чем в ее отсутствие (при одинаковой температуре) яйца варят в подсоленной воде, чтобы, если образуется трещина, вытекающий белок сразу же свернулся и закупорил трещину.
Влияние растворенных солей на осмотические явления. С осмотическими явлениями сталкивался всякий, кто посыпал фрукты сахаром или солил капусту. Если какой –нибудь сочный фрукт засыпать сахаром, то наружу будет выделяться сок. То же самое происходит с капустой, если посыпать ее солью. Причина в том, что любая клетка отделена от окружающего пространства полупроницаемой мембраной. Молекулы воды она пропускает, а ионы, как правило, нет. Если с двух сторон полупроницаемой мембраны находятся растворы с разной ионной силой, вода начнет переходить из раствора с меньшей ионной силой в раствор с большей, так, чтобы ионная сила растворов в итоге сравнялась.
Такое явление (проникновение растворителя из более разбавленного раствора в более концентрированный через полупроницаемую мембрану) называется осмосом (от греческого слова ώσμος — давление). Поэтому, если клетку, не имеющую специальных систем противодействия осмосу, поместить в рассол, внутриклеточная вода будет выходить наружу, и клетка останется без воды. Если же клетку поместить в дистиллированную воду, то вода снаружи начнет разбавлять внутриклеточную жидкость, то есть вода начнет втягиваться в клетку. Дело кончится тем, что клетка лопнет.
Влияние на взвеси. В природных водах часто существуют довольно устойчивые взвеси мелких частиц. Поверхность этих частиц часто несет на себе небольшой электростатический заряд, поэтому они не слипаются. Если же в растворе присутствуют соли, то их ионы нейтрализуют поверхностный заряд, частицы слипаются и выпадают в осадок. Именно поэтому морская вода обычно гораздо прозрачнее озерной.
Влияние на скорости и равновесия реакций с участием ионов. Если в раствор, в котором происходят реакции с участием заряженных частиц, ввести какой – либо фоновый электролит, то он будет «расталкивать» разноименные частицы и «стягивать» одноименные (см. рис.).
Поэтому при высокой ионной силе реакции, связанные с объединением разноименных ионов, затрудняются, а с объединением одноименных — наоборот, облегчаются. В результате происходит смещение равновесий с участием заряженных частиц. Например, электролитическая диссоциация в присутствии фонового электролита (то есть при высокой ионной силе раствора) облегчается. Поэтому в присутствии фоновых электролитов все кислоты становятся несколько сильнее, причем, чем больше заряд образующегося аниона, тем сильнее становится кислота.
Организмы и ионная сила внешней среды. Поскольку ионная сила влияет на конфигурацию белков, а также на скорости и равновесия реакций в организме, все организмы вынуждены поддерживать внутри себя постоянную ионную силу даже при колебании ионной силы внешней среды. Поэтому в любом организме существуют специальные механизмы поддержания постоянства ионной силы. Они сводятся либо к выкачиванию излишней воды, либо к выведению избытка солей. Чем больше разница ионной силы внутри и вне организма, тем больше энергии требуется для поддержания постоянства внутренней ионной силы. Поэтому для водных организмов существует некий диапазон ионной силы внешней среды, в котором эти организмы могут существовать.