Автор работы: Пользователь скрыл имя, 23 Марта 2014 в 18:48, лекция
Любая финансово-кредитная операция, инвестиционный проект или коммерческое соглашение предполагают наличие ряда условий их выполнения, с которыми согласны участвующие стороны. К таким условиям относятся следующие количественные данные: денежные суммы, временные параметры, процентные ставки и некоторые другие дополнительные величины. Каждая из перечисленных характеристик может быть представлена самым различным образом. Например, платежи могут быть единовременными (разовыми) или в рассрочку, постоянными или переменными во времени. Существует более десятка видов процентных ставок и методов начисления процентов. Время устанавливается в виде фиксированных сроков платежей, интервалов поступлений доходов, моментов погашения задолженности и т.д. В рамках одной финансовой операции перечисленные показатели образуют некоторую взаимоувязанную систему, подчиненную соответствующей логике.
Финансовая математика - основа количественного анализа финансовых операций.
Время как фактор в финансовых расчетах.
Проценты, виды процентных ставок.
Существуют различные способы начисления процентов, зависящие от условий контрактов. Соответственно применяют разные виды процентных ставок. Можно выделить ряд признаков, по которым различаются процентные ставки.
Для начисления процентов применяют постоянную базу начисления и последовательно изменяющуюся (за базу принимается сумма, полученная на предыдущем этапе наращения или дисконтирования). В первом случае используют простые, во втором — сложные процентные ставки, при применении которых проценты начисляются на проценты.
Важным является выбор принципа расчетов процентных денег. Существует два таких принципа: от настоящего к будущему и, наоборот, от будущего к настоящему. Соответственно применяют ставки наращения и дисконтные, или учетные, ставки. В финансовой литературе проценты, полученные по ставке наращения, принято называть декурсивными, по учетной ставке — антисипативными. (В России этим понятиям соответствовали проценты "на 100" и "со 100"). Далее декурсивные проценты в большинстве случаев будем называть просто процентами. Пока ограничимся этими сведениями. Подробную характеристику упомянутых ставок отложим до параграфов, в которых обсуждаются конкретные методики их применения в финансовых расчетах
Процентные ставки могут быть фиксированными (в контракте указываются их размеры) или плавающими. В последнем случае указывается не сама ставка, а изменяющаяся во времени база (базовая ставка) и размер надбавки к ней — маржи. В России применяются базовые ставки по рублевым кредитам МИ БОР. Размер маржи определяется рядом условий, в частности финансовым положением заемщика, сроком кредита и т.д. Он может быть постоянным на протяжении срока ссудной операции или переменным.
Важное место в системе процентных ставок занимает ставка рефинансирования Центрального Банка России — ставка, по которой ЦБ выдает кредит коммерческим банкам.
Добавим, что при последовательном погашении задолженности возможны два способа начисления процентов. Согласно первому процентная ставка (простая или сложная) применяется к фактической сумме долга. По второму способу простые проценты начисляются сразу на всю сумму долга без учета последовательного его погашения. Последний способ применяется в потребительском кредите и в некоторых других (правда, редких) случаях.
В практических расчетах применяют так называемые дискретные проценты, т.е. проценты, начисляемые за фиксированные интервалы времени (год, полугодие и т.д.). Иначе говоря, время рассматривается как дискретная переменная. В некоторых случаях — в доказательствах и аналитических финансовых расчетах, связанных с процессами, которые можно рассматривать как непрерывные, в общих теоретических разработках и значительно реже на практике — возникает необходимость в применении непрерывных процентов, когда наращение или дисконтирование производится непрерывно, за бесконечно малые промежутки времени. В подобных ситуациях применяют специальные непрерывные процентные ставки.
Тема 2.
Модели развития операций по схеме простых процентов.
2.1. Схема вложения денег в банк под простые проценты и модели расчета.
2.2 Финансовые последствия при
расчетах по различным
2.3 Дисконтирование по простым процентам.
2.1. Схема вложения денег в банк под простые проценты и модели расчета.
Под наращенной суммой ссуды (долга, депозита, других видов выданных в долг или инвестированных денег) понимают первоначальную ее сумму с начисленными процентами к концу срока начисления. Наращенная сумма определяется умножением первоначальной суммы долга на множитель наращения, который показывает, во сколько раз наращенная сумма больше первоначальной. Расчетная формула зависит от вида применяемой процентной ставки и условий наращения.
К наращению по простым процентам обычно прибегают при выдаче краткосрочных ссуд (на срок до 1 года) или в случаях, когда проценты не присоединяются к сумме долга, а периодически выплачиваются. Для записи формулы наращения простых процентов примем обозначения:
I — проценты за весь срок ссуды;
Р — первоначальная сумма долга;
S — наращенная сумма, т. е. сумма в конце срока;
i— ставка наращения процентов (десятичная дробь);
п — срок ссуды.
Если срок измеряется в годах (как это обычно и бывает), то i означает годовую процентную ставку. Соответственно каждый год приносит проценты в сумме Pi. Начисленные за весь срок проценты составят
I = Рi.
Наращенная сумма, таким образом, находится как
S= Р+ 1= Р+ Рi = Р(1 + ni). (2.1)
Выражение (2.1) называют формулой наращения по простым процентам или кратко — формулой простых процентов, а множитель (1 + пi) — множителем наращения простых процентов.
Поскольку процентная ставка, как правило, устанавливается в расчете за год, то при сроке ссуды менее года необходимо определить, какая часть годового процента уплачивается кредитору. Аналогичная проблема возникает и в случаях, когда срок ссуды меньше периода начисления.
Рассмотрим наиболее распространенный в практике случай - с годовыми периодами начисления. Очевидно, что срок ссуды необязательно равен целому числу лет. Выразим срок п в виде дроби
n = t/K
где I — число дней ссуды, К — число дней в году, или временная база начисления процентов.
При расчете процентов применяют две временные базы: К = 360 дней (12 месяцев по 30 дней) или К = 365, 366 дней. Если К = 360, то получают обыкновенные или коммерческие проценты, а при использовании действительной продолжительности года (365, 366 дней) рассчитывают точные проценты.
Число дней ссуды также можно измерить приближенно и точно. В первом случае продолжительность ссуды определяется из условия, согласно которому любой месяц принимается равным 30 дням. В свою очередь точное число дней ссуды определяется путем подсчета числа дней между датой выдачи ссуды и датой ее погашения. День выдачи и день погашения считаются за один день.
Итак, возможны и применяются на практике три варианта расчета простых процентов.
Очевидно, что вариант расчета с точными процентами и приближенным числом дней ссуды лишен смысла и не применяется.
Поскольку точное число дней ссуды в большинстве случаев, но, разумеется, не всегда, больше приближенного (в чем легко убедиться, определив среднее за год число дней в месяце, которое равно 30,58), то метод начисления процентов с точным числом дней ссуды обычно дает больший рост, чем с приближенным.
ПРИМЕР. Ссуда в размере 1 млн. руб. выдана 20.01 до 05.10 включительно под 18% годовых. Какую сумму должен заплатить должник в конце срока при начислении простых процентов? При решении применим все три метода. Предварительно определим число дней ссуды: точное — 258, приближенное — 255.
1. Точные проценты с точным числом дней ссуды (365/365):
5 = 1 000 000(1 + -111-0,18) = 1 127 233 руб. 365
2. Обыкновенные проценты
с точным числом дней
ссуды
(360/365):
5 = 1 000 000(1 + -Ц^-0,18) = 1 129 000 руб. 360
3. Обыкновенные проценты с приближенным числом дней ссуды (360/360):
255 5 = 1 000 000(1 + -г^-0,18) = 1 127 500 руб. 360
Если общий срок ссуды захватывает два смежных календарных года и есть необходимость в делении суммы процентов между ними (например, при определении годовых сумм дохода и Г.Д.), то общая сумма начисленных простых процентов составит сумму процентов, полученных в каждом году:
2.2 Финансовые последствия при расчетах по различным вариантам.
В кредитных соглашениях иногда предусматриваются изменяющиеся во времени процентные ставки. Если это простые ставки, то наращенная сумма на конец срока определяется следующим образом:
S = P ( 1 + n1i1 + n2i2 +...+ nmim ) = P ( 1+ Σ ntit )
где P - первоначальная сумма (ссуда), it, - ставка простых процентов в периоде t, nt, - продолжительность периода с постоянной ставкой, n = Σ nt.
ПРИМЕР. Пусть в договоре, рассчитанном на год, принята ставка простых процентов на первый квартал в размере 10% годовых, а на каждый последующий квартал - на 1% меньше, чем в предыдущий. Определим множитель наращения за весь срок договора.
S = 1+0,25x0,10+0,25x0,09+0,25x0,
В практике при инвестировании средств в краткосрочные депозиты иногда прибегают к неоднократному последовательному повторению наращения по простым процентам в пределах заданного общего срока. Фактически это означает реинвестирование средств, полученных на каждом этапе наращения, с помощью постоянной и переменной ставок. Наращенная сумма для всего срока составит в этом случае
S = P ( 1 +n1i1 ) ( 1 + n2i2 )...( 1 + ntit )...,
где it - размер ставок, по которым производится реинвестирование.
Если промежуточные сроки начисления и ставки не изменяются во времени, то вместо этой формулы имеем:
S = P ( 1 +ni )m,
где m – количество повторений реинвестирования.
Пример. 200 млн. руб. положены 1-го января на месячный депозит под 20% годовых. Какова наращенная сумма, если операция повторяется 3 раза?
Если начислять точные проценты (365/365), то
S = 200 (1 + 31/365 * 0,2) (1 + 28/365 * 0,2) (1 + 31/365 * 0,2) = 210,026 млн. руб.
Начисление обыкновенных процентов (360/360) при реинвестировании дает
S = 200 (1 + 30/360 * 0,2)3 = 210,168 млн. руб.
2.3 Дисконтирование по простым процентам.
Математическое дисконтирование и банковский (коммерческий) учет.
В практике часто приходится решать задачу, обратную наращению процентов, когда по заданной сумме S, соответствующей концу финансовой операции, требуется найти исходную сумму Р. Расчет Р по S называется дисконтированием суммы 5. Величину Р, найденную дисконтированием, называют современной величиной (текущей стоимостью) суммы S. Проценты в виде разности D=S-Р называются дисконтом или скидкой.
Известны два вида дисконтирования: математическое дисконтирование и банковский (коммерческий) учет.
Математическое дисконтирование. Этот вид дисконтирования представляет собой решение задачи, обратной наращению первоначальной сумы ссуды. Задача в этом случае формулируется так: какую первоначальную сумму ссуды надо выдать в долг, чтобы получить в конце срока сумму S, при условии, что на долг начисляются проценты по ставке i ? Если в прямой задаче S = Р ( 1 + ni ), то в обратной
Р = S ( 1 + ni )-1
Дробь в правой части равенства при величине S называется дисконтным множителем. Этот множитель показывает, какую долю составляет первоначальная сумма ссуды в окончательной величине долга. Дисконт суммы S равен
D = S - Р.
Пример. Через 90 дней после подписания договора должник уплатит 1 000 000 руб. Кредит выдан под 20% годовых (проценты обыкновенные). Какова первоначальная сумма и дисконт?
Р=S (1 + ni) = 1 000 000 / (1+0,20x90/360) = 952 380,95 руб.
D=S - Р = 1 000 000 - 952 380,95 =47 619,05 руб.
Банковский или коммерческий учет. Операция учета (учета векселей) заключается в том, что банк до наступления срока платежа по векселю или другому платежному обязательству покупает его у владельца (являющегося кредитором) по цене ниже той суммы, которая должна быть выплачена по нему в конце срока, т.е. приобретает (учитывает) его с дисконтом. Получив при наступлении срока векселя деньги, банк реализует процентный доход в виде дисконта. В свою очередь владелец векселя с помощью его учета имеет возможность получить деньги хотя и не в полном объеме, однако, ранее указанного на нем срока.
При учете векселя применяется банковский, или коммерческий, учет. Согласно этому методу проценты за пользование ссудой в виде дисконта начисляются на сумму, подлежащую к уплате в конце срока. При этом начисляется учетная ставка d.
Размер дисконта, или суммы учета, очевидно равен Snd; если d – годовая учетная ставка, то n измеряется в годах. Таким образом,
P = S – Snd = S (1 – nd)
где n – срок от момента учета до даты погашения векселя.
Учет посредством учетной ставки чаще всего осуществляется при временной базе К = 360 дней, число дней ссуды обычно берется точным, АСТ/360.