Биохимия

Автор работы: Пользователь скрыл имя, 25 Апреля 2013 в 11:39, лекция

Краткое описание

Белки – это азотсодержащие, высокомолекулярные органические соединения, состоящие из аминокислот, соединенных в цепи с помощью пептидных связей и имеющие сложную структурную организацию.
Одни и те же аминокислоты присутствуют в различных по структуре и функциям белках. Индивидуальность белковых молекул определяется порядком чередования аминокислот в белке.

Содержание

. Введение в биохимию
1.1. БЕЛКИ. АМИНОКИСЛОТЫ -- СТРУКТУРНЫЕ КОМПОНЕНТЫ БЕЛКОВ
1.2. Строение и классификация аминокислот
1.3. Уровни структурной организации белковых молекул
1.4. Физико-химические свойства белков
1.5. КЛАССИФИКАЦИЯ БЕЛКОВ
1.6. Углеводы. Классификация углеводов
1.7. Липиды
1.8. Витамины
1.8.1. Жирорастворимые витамины
1.8.2. Водорастворимые витамины
1.8.3. ВИТАМИНОПОДОБНЫЕ ВЕЩЕСТВА.
2. Ферменты
2.1. Ферменты и неорганические катализаторы
2.2. Строение ферментов
2.3. Коферменты
2.4. Свойства ферментов
2.5. Номенклатура ферментов
2.6. Классификация ферментов
2.7. Механизм действия ферментов
2.8. Ингибирование ферментативной активности
3. Обмен углеводов
3.1. Биологическая роль углеводов
3.2. Превращение углеводов в пищеварительном тракте
3.3. Биосинтез и распад гликогена
3.4. Основные пути катаболизма глюкозы
3.4.1. Анаэробный гликолиз
3.4.2. Аэробный гликолиз (гексозодифосфатный путь)
3.4.3. Гексозомонофосфатный путь
3.4.4. Глюконеогенез
4. Обмен липидов
4.1. Основные липиды организма человека их биологическая роль.
4.2. Переваривание липидов, ресинтез жира
4.3. Липопротеины крови
4.4. Окисление высших жирных кислот
4.5. Окисление глицерина
4.6. Биосинтез ВЖК в тканях
4.7. Обмен холестерина
5. Обмен белков
5.1. Переваривание белков
5.2. Гниение аминокислот, обезвреживание продуктов гниения
5.3. Метаболизм аминокислот
5.4. Пути обезвреживания аммиака
6. Регуляция обмена веществ
6.1. Сигнальные молекулы
6.2. Гормоны гипоталамуса
6.3. ГОРМОНЫ ГИПОФИЗА
6.4. ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ
6.5. ГОРМОНЫ ПАРАЩИТОВИДНЫХ ЖЕЛЕЗ
6.6. Гормоны половых желез
6.7. Гормоны надпочечников
6.8. Гормоны поджелудочной железы
7. Экзаменационные вопросы

Прикрепленные файлы: 1 файл

Лекции по Биохимии.doc

— 2.33 Мб (Скачать документ)

Различия  в первичной структуре белков, их конфигурации, молекулярной массе, размерах определяют разнообразные  свойства белков. Можно выделить несколько  групп физико-химических свойств. 

   

                        Электрохимические свойства белков.

Белки — амфотерные полиэлектролиты, т. е. подобно аминокислотам они  обладают кислотными и основными  свойствами. Эти свойства белка обусловлены  электрохимической природой R-радикалов аминокислот, входящих в состав белка. Поскольку большая часть ионогенных и полярных R-групп находится на поверхности белковой глобулы, то именно они определяют кислотно-основные (амфотерные) свойства и заряд белковой молекулы. Кислые свойства белку придают аспарагиновая и глутаминовая аминокислоты, диссоциация их карбоксильных групп является источником отрицательных электрических зарядов на поверхности белковой молекулы. Основные свойства белку придают лизин,  аргинин, гистидин, способные к протонированию и к созданию на поверхности белковой молекулы положительных зарядов. В амфотерную природу белковой молекулы вносят вклад (хотя и несущественный) ее N- и С-концевые аминокислоты. Слабая диссоциация  SН-групп цистеина и ОН-групп тирозина весьма несущественно влияет на амфотерность белков. В целом, чем больше кислых аминокислот содержится в белке, тем сильнее выражены его  кислотные свойства, тем выше суммарная плотность отрицательного заряда, и чем больше основных аминокислот, тем ярче проявляются основные свойства белка и выше плотность положительных зарядов на его молекуле. Однако следует отметить, что значения рК радикалов аминокислот колеблются в довольно широких пределах.

Амфотерная природа  белков обусловливает определенную буферность их растворов. Однако при физиологических значениях рН она невелика. Исключение составляют белки, содержащие большое количество гистидина, так как только боковые имидазольные группы гистидина обладают буферными свойствами в интервале значений рН, близких к физиологическим. Таких белков мало; к ним относится, например, гемоглобин животных, содержащий 8 % гистидина, обусловливающего высокую внутриклеточную буферность в эритроцитах, поддерживая рН крови на постоянном уровне.

Суммарный заряд белковой молекулы определяется соотношением в ней кислотных и основных радикалов аминокислот и величиной их рК. Если в белке кислые аминокислоты преобладают над основными, то в целом молекула белка электроотрицательна, т. е. находится в форме полианиона; и наоборот, если преобладают основные аминокислоты — в форме поликатиона.

Амфотерный характер белков особенно ярко проявляется при  изменении рН белкового раствора. В кислой среде в результате высокой  концентрации Н+-ионов идет подавление кислотной диссоциации карбоксильных групп и интенсивное протонирование NH-2, —NH—, имидазольных групп — суммарный заряд белковой молекулы будет положителен; в щелочной среде при избытке ОH-ионов будет наблюдаться обратная картина: интенсивная диссоциация карбоксильных групп и депротонирование основных групп — суммарный заряд отрицателен. Естественно, что каждый белок при каком-то определенном значении рН будет иметь суммарный электрический заряд, равный нулю; такое состояние белка называется изоэлектрическим состоянием, а величина рН, обусловливающая это состояние, называется изоэлектрической точкой (ИЭТ). В этой точке белок не обладает подвижностью в электрическом поле; имеет наименьшую растворимость в воде; белковые растворы обладают минимальной устойчивостью и минимальным осмотическим давлением. ИЭТ каждого белка определяется соотношением кислых и основных групп, величиной их рК: чем больше это соотношение и ниже величина рК групп, тем ниже ИЭТ белка. У кислых белков ИЭТ < 7, у нейтральных около 7, а у основных > 7; при рН < ИЭТ белок будет находиться в форме поликатиона, при рН > ИЭТ — в форме полианиона, в ИЭТ — в форме ам-фотерного полииона (цвиттер-полииона). ИЭТ большинства белков клеток животных, растений, микроорганизмов лежит в пределах 5,5—6,0, а внутриклеточная величина рН находится в пределах 7,0—7,2 (физиологическое значение рН). Следовательно, клеточные белки имеют в общем отрицательный заряд, который уравновешивается неорганическими катионами.

Поскольку каждый белок  в водных или буферных растворах  имеет свой суммарный заряд определенной величины, это свойство белков нашло широкое применение для их разделения методом электрофореза. Он основан на передвижении заряженной частицы в электрическом поле. Движение частицы происходит в жидкой среде, которая удерживается инертным твердым носителем, например полоской бумаги, гелевой пленкой из крахмала, опарой, полиакриламидами, декстраном, ацетатом целлюлозы, что позволяет существенно снизить диффузию фракционируемых белков в отличие от электрофореза в водной среде. Жидкость же служит проводящей средой для электрического поля, когда к ней приложено внешнее напряжение. Подвижность заряженной молекулы в электрическом поле называется электрофоретической подвижностью.

В разделении белков наибольшее распространение получил электрофорез в полиакриламидном геле (ПААГ), который применяется для разделения, очистки, оценки чистоты и определения молекулярной массы. Гель полиакриламидной матрицы в виде однородного тонкого слоя (а не гранул) можно поместить между двумя пластмассовыми пластинками или же заполнить этим гелем трубочки. Структура полиакриламида сшита поперечными связями, благодаря чему этот материал имеет развитую пористость.

Коллоидные  свойства белков

Водные растворы белков — это устойчивые системы, по этому свойству их можно отнести к истинным молекулярным растворам. Однако высокая молекулярная масса белков придает им коллоидный характер.

 Как правило, диаметр  белковых глобул превышает 0,001 мкм. Молекулы белков не способны  диффундировать через полупроницаемые  мембраны —целлофан. На этом явлении основана очистка белков от низкомолекулярных примесей методом диализа, очистка и концентрирование белков методом ультрафильтрации. При диализе целлофановый мешочек с раствором белка помещают в сосуд с проточной водой. Внешние стенки мешочка омываются водой. Низкомолекулярные вещества диффундируют через мембрану и удаляются вместе с водой, а белки остаются. При ультрафильтрации мембрана действует как молекулярный фильтр.

Биологические мембраны живых клеток также непроницаемы для белков. Поэтому содержащиеся в протоплазменных структурах этих клеток белки создают в них определенное осмотическое давление, называемое коллоидно-осмотическое или онкотическое  давление.

Малой скоростью диффузии обладают белки и в водных растворах, она зависит не только от молекулярной массы, но и от формы белковой молекулы. Глобулярные белки в водных растворах имеют более высокий коэффициент диффузии, чем фибриллярные.

Характерными признаками коллоидного характера белковых растворов являются их опалесценция, блеск и способность рассеивать лучи света (эффект Тиндаля).

Если через кювету с раствором низкомолекулярного вещества, например NaС1, пропустить пучок света, то в кювете он не будет обнаружен, раствор является «оптически пустым». Иная картина будет наблюдаться в кювете с раствором белка, при боковом освещении в ней появляется светящаяся полоса или конус. При прохождении света через раствор, содержащий белковые глобулы, радиус которых намного превышает длину волны света, будет наблюдаться дифракция света: падая на белковую глобулу, свет будет отражаться в различных направлениях.

Светорассеивающая способность  белков может быть использована при определении концентрации белковых растворов методами нефелометрии и турбидиметрии, основанных на сравнении интенсивности светорассеивания этих растворов.

                Гидратация белков 

  Гидратация белков - способность белков связывать  воду. 100 г. белка связывает 30-35 г. воды.

. Вода связывается   ионогенными группами и пептидными  группами, расположенными в основном, внутри молекулы белка. Проникновение воды внутрь молекулы белка называется набуханием. Связывание воды ионогенными группами, расположенными на поверхности белковой молекулы, приводит к образованию гидратной оболочки. Количество связанной воды для различных белков составляет около 35 г на 100 г белка. Связанная вода в гидратной оболочке находится в упорядоченном состоянии, что приводит к уменьшению энтропии при гидратации.

1.3.4 Растворимость белков  в воде 

 Многие  белки хорошо  растворимы в воде, что определяется  количеством полярных групп. Растворимость  глобулярных молекул лучше, чем  фибриллярных белков. Факторы, определяющие  стабильность белковых растворов:

- наличие зарядов в белковой  молекуле. Одноименные заряды способствуют растворимости белка, т.к. препятствуют соединению молекул и выпадению в осадок.

- Наличие ГИДРАТНОЙ оболочки, препятствующей  объединению белковых молекул.  Для осаждения белка, его необходимо  лишить этих двух факторов  устойчивости. Методом осаждения белка является вливание - осаждение белка с помощью нейтральных солей - (NH4)2-S04.

В полунасыщенном растворе (NH4)2-SO4 осаждаются глобулины, а в насыщенном - альбумины.

После удаления осаждающего фактора, белки переходят в растворённое состояние.

            Лабильность  пространственной  структуры белка. 

Под действием внешних факторов может происходить нарушение  высших уровней организации белковой молекулы (вторичной, третичной, четвертичной структур) при сохранении первичной  структуры. При этом белок теряет свои нативные, физико-химические и биологические свойства. Это явление называется денатурацией. Денатурацию вызывают химические факторы ( повышение температуры, давления, механическое воздействие, УЗ, ионизирующее излучение), химические факторы ( кислоты, щелочи, органические растворители -спирт, фенол; соли тяжёлых металлов).n В некоторых случаях возможна РЕНАТУРАЦИЯ, когда денатурирующий фактор действовал кратковременно и нанёс лёгкое разрушение молекуле. В последние годы установлено, что в организме есть белки предотвращающие денатурацию.  ШАПЕРОНЫ - класс белков, защищающий в условиях клетки другие белки от денатурации. Они облегчают формирование пространственной конфигурации белков. К ним относятся белки теплового шока или белки стресса.

Предыдущий раздел

Раздел верхнего уровня

Следующий раздел


1.5. КЛАССИФИКАЦИЯ БЕЛКОВ

В организме человека содержится свыше 50 000 индивидуальных белков, отличающихся первичной структурой, конформацией, строением активного  центра и функциями. Однако до настоящего времени нет единой и стройной классификации, учитывающей различные особенности белков. В основе имеющихся классификаций лежат разные признаки. Так белки можно классифицировать:

·        по форме белковых молекул (глобулярные – округлые или фибриллярные – нитевидные)

·        по молекулярной массе (низкомолекулярные, высокомолекулярные)

·        по выполняемым функциям (транспортные, структурные, защитные, регуляторные и др.)

·        по локализации в клетке (ядерные, цитоплазматические, лизосомальные и др.)

·        по структурным признакам и химическому составу белки делятся на две группы: простые и сложные. Простые белки представлены только полипептидной цепью, состоящей из аминокислот. Сложные белки имеют в своем составе белковую часть и небелковый компонент (простетическую группу). Однако и эта классификация не является идеальной, поскольку в чистом виде простые белки встречаются в организме редко. 

Характеристика  простых белков.

К простым белкам относят  гистоны, протамины, альбумины и  глобулины, проламины и глютелины, протеиноиды.

Гистоны - тканевые белки многочисленных организмов, связаны с ДНК хроматина. Это белки небольшой молекулярной массы (11-24 тыс.Да). По электрохимическим свойствам относятся к белкам с резко выраженными основными свойствами (поликатионные белки), ИЭТ у гистонов колеблется от 9 до 12. Гистоны имеют только третичную структуру, сосредоточены в основном в ядрах клеток. Гистоны связаны с ДНК в составе дезоксирибонуклеопротеинов. Связь гистон-ДНК электростатическая, так как гистоны имеют большой положительный заряд, а цепь ДНК-отрицательный. В составе гистонов преобладают диаминомонокарбоновые аминокислоты аргинин, лизин.

Выделяют 5 типов гистонов. Деление основано на ряде признаков, главным из которых является соотношение  лизина и аргинина во фракциях,  четыре гистона Н2А, Н2В, Н3 и Н4 образуют октамерный белковый комплекс, который называют «нуклеосомный кор». Молекула ДНК «накручивается» на поверхность гистонового октамера, совершая 1,75 оборота (около 146 пар нуклеотидов). Такой комплекс гистоновых белков с ДНК служит основной структурной единицей хроматина, ее называют «нуклеосома».   

Основная функция гистонов - структурная и регуляторная. Структурная  функция состоит в том, что  гистоны участвуют в стабилизации пространственной структуры ДНК, а  следовательно, хроматина и хромосом. Регуляторная функция заключается в способности блокировать передачу генетической информации от ДНК к РНК.

Протамины - своеобразные биологические заменители гистонов, но отличаются от них составом и структурой. Это самые низкомолекулярные белки (М - 4-12 тыс. Да), обладают резко выраженными основными свойствам из-за большого содержания в них аргинина (80%).

Как и гистоны, протамины - поликатионные белки. Они связываются  с ДНК в хроматине спермиев и находятся в молоках рыб.

Сальмин - протамин из молоки лосося.

Скумбрин - из молоки скумбрии.

Протамины делают компактной ДНК сперматозоидов, т.е. выполняют  как и гистоны, структурную функцию, однако не выполняют регуляторную.

Альбумины  и  глобулины.

     Альбумины  (А) и глобулины (Г).

А и Г белки, которые есть во всех тканях. Сыворотка крови наиболее богата этими белками. Содержание альбуминов в ней составляет 40-45 г/л, глобулинов 20-30 г/л, т.е на долю альбуминов приходится более половины белков плазмы  крови.

Альбумины-белки относительно небольшой молекулярной массы (15-70 тыс. Да); они имеют отрицательный заряд и кислые свойства, ИЭТ - 4,7, содержат много глутаминовой аминокислоты. Это сильно гидратированые белки, поэтому они осаждаются только при большой концентрации водоотнимающих веществ.

Благодаря высокой гидрофильности, небольшим размерам молекул, значительной концентрации альбумины играют важную роль в поддержании осмотического  давления крови. Если концентрация альбуминов ниже 30 г/л, изменяется осмотическое давление крови, что приводит к возникновению отеков. Около 75-80 % осмотического давления крови приходится на долю альбуминов.

Характерным свойством  альбуминов является их высокая адсорбционная  способность. Они адсорбируют полярные и неполярные молекулы, выполняя транспортную роль. Это неспецифические переносчики они транспортируют гормоны, холестерол, билирубин, лекарственные вещества, ионы кальция. Связывание и перенос длинноцепочных жирных кислот - основная физиологическая функция сывороточных альбуминов. Альбумины синтезируются преимущественно в печени и быстро обновляются, период их полураспада 7 дней.

Глобулины -  белки с большей, чем альбумины молекулярной массой. Глобулины слабокислые или нейтральные белки ( ИЭТ = 6 – 7,3 ). Некоторые из глобулинов обладают способностью к специфическому связыванию веществ (специфические переносчики).

Информация о работе Биохимия