Автор работы: Пользователь скрыл имя, 12 Февраля 2013 в 19:53, дипломная работа
Для увеличения надежности изготавливаемых изделий наносят различные виды покрытий. Широкие технологические возможности плазменного напыления обусловили его использование во многих областях производства. Плазменные покрытия применяются для защиты от нагрева, коррозии, эрозионного воздействия высокотемпературных газовых потоков, повышения износо- и жаростойкости.
В рамках данного дипломного проекта проведена работа по совершенствованию процесса плазменного нанесения покрытий на основе стандартизации и технического регулирования.
ВВЕДЕНИЕ 3
1 Технологические особенности процесса плазменного напыления покрытий 3
1.1 Сущность метода плазменного напыления 3
1.2 Плазмообразующие газы 3
1.3 Параметры распыляемого материала 3
1.4 Параметры, характеризующие внешние условия напыления 3
1.5 Параметры плазменной струи и потока напыляемых частиц 3
1.6 Степень защиты процесса 3
1.7 Преимущества и недостатки метода 3
1.8 Области применения плазменных покрытий 3
2 Разработка проекта стандарта организации 3
2.1 Стандартизация в системе управления качеством 3
2.2 Требования к стандартам организации 3
2.3 Существующие стандарты 3
2.4 Актуальность разработки стандарта 3
2.5 Основные требования к построению проекта стандарта 3
3 Безопасность жизнедеятельности 3
3.1 Обоснование необходимости разработки проекта технического регламента 3
3.2 Основные требования к построению проекта технического регламента 3
4 Определение затрат на проведение работ по стандартизации 3
4.1 Расчет затрат на материалы для разработки проекта 3
4.2 Расчет заработной платы 3
4.3 Определение расходов на машинное время 3
4.4 Расчет потребляемой компьютером энергии 3
4.5 Расчет затрат на накладные расходы 3
4.6 Составление сметы затрат на проектирование 3
ЗАКЛЮЧЕНИЕ 3
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 3
ПРИЛОЖЕНИЕ А 3
ПРИЛОЖЕНИЕ Б 3
Аналогичные закономерности
можно наблюдать и при распылен
Рисунок 4 – Механизм плавления и распыления нейтральной проволоки в двухструйном плазмотроне в зависимости от скорости подачи νпр:
1 – подача проволоки; 2 – расплавленные частицы
Для плазменного
напыления оптимальные
Большое влияние на температуру в пятне напыления оказывает скорость перемещения распылителя, обычно она находится в пределах 0,05-1,0 м/с. Невысокие скорости увеличивают контактную температуру частиц, однако при этом возрастает опасность перегрева напыляемого изделия.
Для плазменного напыления характерны специфические параметры, влияющие на эффективность процесса:
Особенно большое влияние оказывает снижение давления в камере, при этом существенно меняются теплофизические свойства струи, характер ее истечения, а также температура и скорость напыляемых частиц. [3]
К параметрам плазменной струи, зависящим от режима процесса, следует относить:
В целом параметры плазменной струи определяют нагрев и ускорение напыляемых частиц, а также состояние поверхности напыления.
Параметры потока напыляемых частиц следует рассматривать во всем диапазоне их взаимодействия с плазменной струей. На эффективность напыления оказывают преимущественное влияние параметры потока частиц, характеризующие их состояние вблизи поверхности формирования покрытия, к таким параметрам относят в основном:
Рассмотренные группы параметров: конструктивных, режима работы плазмотрона и других – определяют параметры плазменной струи и потока напыляемых частиц. [5]
По степени защиты различают плазменное напыление: без защиты, с местной защитой и общей защитой.
Плазменное напыление без защиты. Процесс ведется на воздухе без изоляции плазменной струи, потока напыляемых частиц и пятна напыления. При этом создаются благоприятные условия для попадания воздуха в зону протекания процесса. Появляется возможность окисления распыляемого материала и насыщения его азотом. Даже применение инертных плазмообразующих газов не обеспечивает защиту процесса от взаимодействия с воздухом.
Плазменное напыление с местной защитой (рисунок 5). В большинстве случаев местная защита недостаточно эффективна. Для этих целей применяют местные камеры или кольцевую газовую защиту с использованием дополнительных сопловых устройств. Достаточно надежен способ защиты при использовании насадок на сопловую часть распылителя.
Рисунок 5 – Схема плазменного напыления с местной защитой:
а – местная камера (стрелками показано перемещение напыляемого изделия);
б – струйная защита из сопла; в – струйная кольцевая защита из насадка;
1 – местная камера; 2 – сопло; 3 – насадок; 4 – плазменный распылитель;
5 – отсос плазменной струи
В насадке происходит нагрев и ускорение напыляемых частиц плазменной струей при полной изоляции их от воздуха. На выходе плазменная струя обтирается посредством ее отсоса. В этом случае поток напыляемых частиц и пятно напыления изолируются кольцевым газовым потоком защитного газа, создаваемого дополнительным сопловым устройством. Способ позволяет также устранять или регулировать термосиловое воздействие плазменной струи на поверхность напыления. При ведении процесса с регулируемым термосиловым воздействием струи удается устранять перегрев напыляемых изделий.
Плазменное напыление с общей защитой (рисунок 6). Напыление покрытий ведется в камере, процесс полностью изолирован от воздуха, атмосфера в камере формируется с помощью плазмообразующего газа. Применяются два способа для напыления с общей защитой покрытий, особенно ответственного назначения: 1) при нормальном давлении газа в камере (небольшое избыточное давление); 2) при пониженном давлении 0,133-2,66 МПа. Второй способ («плазменное напыление в динамическом вакууме») позволяет получать покрытия наиболее высокого качества благодаря более высокой чистоте атмосферы по активным газам; высоким скоростям напыляемых частиц; возможности активации поверхности напыления повышением температуры и газовыми разрядами. [8]
Риcунок 6 – Схема плазменного напыления с общей защитой в камерах (стрелками указаны перемещения распылителя и распыляемого материала):
1 – камера; 2
– плазменный распылитель; 3 –
откачка камеры перед
В стадии разработки находится способ напыления в камере при повышенном и высоком давлении.
При напылении в камере плазмообразующий газ сбрасывается в атмосферу либо поступает на регенерацию, процесс ведется по замкнутому циклу, что в ряде случаев экономично оправданно.
Способы плазменного напыления в камере перспективны, позволяют получать покрытия высокого качества при улучшении условий труда и без нарушения экологии. [10]
Основные достоинства метода плазменного напыления:
К недостаткам метода следует отнести:
По мере совершенствования
метода плазменного напыления
Значительный интерес представляет плазменное напыление с использованием двухдуговых или трехфазных плазмотронов. Большие преимущества сулит применение ВЧ-плазмотронов. В этих случаях получают плазму, не загрязненную материалами электродов, упрощается осевая подача распыляемого материала.
В последнее
время активно развиваются
Рисунок 7 – Схемы импульсных способов нанесения покрытий плазмой низкотемпературной (а) и высокотемпературной (б) [C - емкость; P - разрядник]:
1 – камера; 2 – электроды; 3 – фольга; 4 – плазма; 5 – обрабатываемое изделие
Плазменные покрытия получили распространение в самых различных отраслях техники. Кроме ракетной техники и машиностроения, где плазменные покрытия впервые нашли свое применение, в последние годы их стали использовать в атомной энергетике, металлургии, в микро- и радиоэлектронике, авиастроении, технологии производства композиционных материалов.
Таблица 2 - Области применения плазменных покрытий, для которых получены или ожидаются положительные результаты [4]
Изделие |
Назначение покрытия |
Материал покрытия | |
Ракетная техника | |||
Головки и сопла ракет |
Жаростойкость |
Al2O3, ZrO2 | |
Космические объекты | |||
Обтекатели реактивных снарядов |
Жаропрочность |
W | |
Аппараты для космических исследований |
Теплоизоляция |
ZrO2 | |
Жаростойкость |
Al2O3, ZrO2, W | ||
Теплоизоляция |
Металлы и мелкодисперсные порошки окислов, карбидов, силицидов | ||
Терморадиационные свойства | |||
Авиация | |||
Сочленения и лопатки турбины и компрессора реактивного двигателя. Лопатки газовых турбин |
Эрозионная стойкость |
Co – WC, TiC, Cr2O3, Ni – Al. Ni – Cr – B – Si | |
Цапфы шасси |
Жаростойкость |
Ai – Ni, Al, Al2O3 | |
Несущие конструкции крыльев и фюзеляжа |
Износостойкость |
Твердые карбиды и сплавы | |
Прочность. Жесткость |
Композиционные
материалы с волокнистым | ||
Машиностроение | |||
Прессформы для литья под давлением |
Жаростойкость |
Сr – Ni-сплавы | |
Жаропрочность и защита от приваривания |
Al2O3, Al – Ni | ||
Разъемные и
неразъемные матрицы для прессо |
Износостойкость |
Cr – B – Ni – Si | |
Теплоизоляция |
Al2O3 | ||
Матрицы для
экструзии тугоплавких |
Антисхватывание |
Al2O3 | |
Полупостоянные формы для отливки крупных деталей (например, турбин) |
Жаростойкость |
Al2O3 | |
Индукторы для высокочастотной пайки |
Электроизоляция |
Al2O3 |
Информация о работе Разработка проекта стандарта организации процесса плазменного нанесения покрытий