Автор работы: Пользователь скрыл имя, 06 Октября 2013 в 17:31, дипломная работа
Основной объем монокристаллического кремния (80-90%) потребляемого электронной промышленностью, выращивается по методу Чохральского. Фактически весь кремний, используемый для производства интегральных схем, производиться этим методом.
Кристаллы, выращенные этим методом обычно не содержат краевых дислокаций, но могут включать небольшие дислокационные петли, образующиеся при конденсации избыточных точечных дефектов. Кристаллический рост заключается в фазовом переходе из жидкого состояния в твердую фазу.
Применительно к кремнию этот процесс может быть охарактеризован как однокомпонентная ростовая система жидкость-твердое тело.
Введение 4
1.Физические и химические свойства кремния 7
2.Методы выращивания монокристаллов из расплава 15
2.1. Метод Бриджмена 15
2.2. Метод Стокбаргера 17
2.3. Метод Чохральского 18
2.4. Метод Степанова 19
2.5. Метод Вернейля 20
2.6. Метод бестигельной зонной плавки 21
2.7. Метод Киропулоса 23
3. Методы выращивания монокристаллов из раствора 24
3.1. Высокотемпературный метод 24
3.2. Низкотемпературный метод 25
3.3. Гидротермальный метод 26
4. Методы выращивания из газообразного вещества 27
4.1 Метод кристаллизации 27
5. Характеристики метода 28
6. Параметры, влияющие на рост монокристаллического кремния 31
7. Легирование 32
8. Оборудование для роста кристаллов методом Чохральского 34
9. Технология процесса 40
Выводы 46
Список литературы 47
3. Устройство для управления составом атмосферы, состоящее из газовых источников, расходомеров, системы продувки и вакуумной системы.
4. Блок управления, в который входят микропроцессор, датчики и устройства вывода.
Тигель является наиболее важным элементом ростовой системы. Так как тигель содержит расплав, его материал должен быть химически инертен по отношению к расплавленному кремнию.
Это основное требование при выборе материала тигля, так как электрические свойства кремния чувствительны даже к таким уровням примеси, как 10-7 ат. %. Кроме того, материал тигля должен иметь высокую температуру плавления, обладать термической стабильностью и прочностью [3]. Также он должен быть недорогим или обладать способностью к многократному использованию.
К сожалению, расплавленный кремний растворяет почти все используемые материалы (например, карбиды тугоплавких металлов TiC или TaC, тем самым способствуя слишком высокому уровню металлических примесей в растущем монокристалле. Тигли из карбида кремния также неприемлемы. Несмотря на то, что углерод является электрически нейтральной примесью в кремнии, вырастить высококачественные монокристаллы кремния из расплавов, насыщенных углеродом, не удается.
Отношение диаметра
тигля к его высоте в больших
установках =1 или немного превышает это
значение. Обычно диаметр тигля равен
25,30 или
35 см для объема загрузки 12,20 и 30 кг соответственно.
Толщина стенок тигля равна 0.25см, однако
кварц недостаточно тверд, чтобы использовать
его в качестве контейнера для механической
поддержки расплава. После охлаждения
несоответствие термических коэффициентов
линейного расширения между оставшимися
в тигле кремнием и кварцом приводит к
растрескиванию тигля.
Возможность использования нитрида кремния в качестве материала для тиглей была продемонстрирована при осаждении нитрида из парогазовых смесей на стенки обычного тигля.
Контейнер используется для поддержки кварцевого тигля. В качестве материала для контейнера служит графит, поскольку он обладает хорошими высокотемпературными свойствами. Обычно используют сверхчистый графит. Высокая степень чистоты необходима для предотвращения загрязнения кристалла, примесями, которые выделяются из графита при высоких температурах процесса. Контейнер устанавливают на пьедестал, вал которого соединен с двигателем, обеспечивающим вращение. Все устройство можно поднимать или опускать для поддержания уровня расплава в одной фиксированной точке, что необходимо для автоматического контроля диаметра растущего слитка.
Камера высокотемпературного узла установки должна соответствовать определенным требованиям. Прежде всего, она должна обеспечивать легкий доступ к деталям узла для облегчения загрузки и очистки. Высокотемпературный узел должен быть тщательно герметизирован, дабы предотвратить загрязнение системы из атмосферы. Кроме того, должны быть предусмотрены специальные устройства, предотвращающие нагрев любого узла камеры до температуры, при которой давление паров ее материала может привести к загрязнению кристалла. Как правило, наиболее сильно нагреваемые детали камеры имеют водяное охлаждение, а между нагревателем и стенками камеры устанавливают тепловые экраны.
Для расплавления материала загрузки используют главным образом высокочастотный индукционный или резистивный нагрев. Индукционный нагрев применяют при малом объеме загрузки, а резистивный - исключительно в больших ростовых установках. Резистивные нагреватели при уровне мощности порядка нескольких десятков киловатт обычно меньше по размеру, дешевле, легче в изготовлении и более эффективны. Они представляют собой графитовый нагреватель, соединенный с источником постоянного напряжения.
Рис. 18. Схема установки для выращивания кристаллов:
1.Затравочный шток 2.Верхний кожух 3.Изолирующий клапан
4.Газовый вход 5.Держатель затравки и затравка 6.камера
высокотемпературной зоны 7.Расплав 8.Тигель 9.Выхлоп
10.Вакуумный насос 11.Устройство вращения и подъема тигля
12.Система контроля и источник энергии 13.Датчик температуры
14.Пьедестал 15.Нагреватель 16.Изоляция 17.Труба для продувки
18.Смотровое окно 19.Датчик для контроля диаметра растущего
слитка.
Рост монокристалла по методу Чохральского должен проводиться в инертной среде или вакууме, что вызвано следующими причинами [6]:
1) Нагретые
графитовые узлы должны быть
защищены от воздействия
2) Газовая
атмосфера не должна вступать
в химическую реакцию с
Выращивание кристаллов в вакууме удовлетворяет указанным требованиям и, кроме того, имеет ряд преимуществ, в частности, способствует удалению из системы моноокиси кремния, тем самым предотвращает ее осаждение на стенках камеры. При выращивании в газовой атмосфере чаще всего используют инертные газы: аргон и гелий.
Инертные газы могут находиться при атмосферном или пониженном давлении. В промышленном производстве для этих целей используется аргон, что объясняется его низкой стоимостью.
Оптимальный расход газа составляет 1500 л на 1кг выращенного кремния. Аргон поступает в камеру при испарении из жидкого источника и должен соответствовать требованиям высокой чистоты в отношении содержания влаги, углеводородов, и других примесей.
Блок управления может включать в себя разные приборы. Он предназначен для контроля и управления такими параметрами процесса, как температура, диаметр кристалла, скорость вытягивания и скорость вращения. Контроль может проводиться по замкнутому или разомкнутому контуру. Параметры, включающие скорости вытягивания и вращения, имеют большую скорость отклика и чаще всего контролируются по принципу замкнутого контура с обратной связью [7]. Большая тепловая масса обычно не требует кратковременного контроля температуры. Например, для контроля диаметра растущего кристалла инфракрасный датчик температуры может быть сфокусирован на границе раздела фаз расплав-монокристалл и использован для определения температуры мениска. Выход датчика связан с механизмом вытягивающего устройства и контролирует диаметр слитка путем изменения скорости вытягивания. Наиболее перспективными управляющими являются цифровые микропроцессорные системы. Они позволяют уменьшить непосредственное участие оператора в процессе выращивания и дают возможность организовать программное управление многими этапами технологического процесса.
Блок схема получения
Исходный материал (в виде порошка или кусков поликристаллов), прошедший стадию тщательной очистки, загружают в тигель и нагревают до расплавленного состояния [4]. Процесс проводят в герметичной камере в вакууме или в нейтральной (инертной), окислительной или восстановительной атмосфере.
Рис. 19. Технология процесса
Затем затравочный кристалл, установленный в охлаждаемый кристаллодержатель и ориентированный в нужном кристаллографическом направлении, погружают в расплав. После частичного оплавления конца затравки и достижения определенного температурного режима начинается вытягивание таким образом, чтобы кристаллизация расплава происходила от затравочного кристалла. Диаметр кристалла регулируют подбором скорости вытягивания или нагревом расплава или обоими факторами одновременно.
Непосредственно
перед началом выращивания
После прогрева затравки конец ее погружают в перегретый расплав и частично оплавляют, с целью удаления поверхностных дефектов и загрязнений. При этом граница раздела расплав - затравка оказывается расположенной над поверхностью расплава и называется фронтом кристаллизации.
При сильном перегреве расплава происходит разрыв столба при вытягивании; при слишком низкой температуре расплава вокруг затравки образуется область переохлаждения, вследствие чего даже при отсутствии вытягивания происходит заметное наращивание кристалла на затравку. Поэтому вытягивание кристалла необходимо начинать при промежуточной между двумя этими случаями температуре, т. е. когда затравка сцеплена с расплавом и роста кристалла еще не происходит.
На начальной стадии вытягивания, после оплавления затравки, производят формирование так называемой шейки монокристалла, представляющей собой тонкий и длинный монокристалл. При этом диаметр шейки не должен превышать линейного размера поперечного сечения затравки, а длина должна составлять несколько ее диаметров. Формирование шейки производят с одновременным понижением температуры расплава с большой линейной скоростью вытягивания. Это приводит к большому пресыщению вакансиями области монокристалла вблизи фронта кристаллизации, что при соответствующей кристаллографической ориентации затравки облегчает движение и выход на поверхность кристалла дислокаций, проросших из затравки. Для этого затравка должна быть ориентирована так, чтобы плоскости наиболее легкого движения дислокаций располагались под возможно большими углами к направлению роста кристалла.
1. Приготовление навески. Приготавливается навеска шихты и помещается в контейнер (тигель). В случае больших навесок (десятки и сотни килограмм) навеску стараются формировать из небольших кусочков (от 10 до 50мм), чтобы исключить разрушение контейнера и выплёскивание части расплава: при плавлении твёрдые куски, остающиеся в верхней части навески в какой-то момент начинают проседать и падать в расплав. Формирование навески из более мелких фракций навески нецелесообразно, поскольку, не достигая температуры плавления частицы, могут спекаться, образуя массивное тело. Особенно небезопасным может быть плавление мелкоизмельчённых многокомпонентных навесок, поскольку в зонах контакта частиц могут образовываться спайки.
2. Создание атмосферы. При необходимости в установке создаётся атмосфера с необходимыми параметрами (для монокристаллического кремния — это нейтральная аргоновая атмосфера с давлением не более 30 Торр).
3. Нагревание навески до температуры плавления. Навеска шихты расплавляется, при этом подвод энергии ведётся преимущественно снизу и с боков контейнера. Это связано с тем, что при оплавлении навески сверху вниз расплавленный материал будет стекать вниз и кристаллизоваться на более холодной шихте с риском разрушения стенок контейнера.
4. Создание необходимого условия для начала кристаллизации. Выставляется такое положение уровня расплава относительно нагревателя, при котором создаются необходимые условия для начала кристаллизации исключительно в центре расплава вблизи от его поверхности. Строго говоря, классический метод Чохральского, применительно к выращиванию слитков кремния диаметром свыше 50 мм, имеет ещё одну зону локального переохлаждения вблизи зоны контакта трёх фаз (расплав-тигель-атмосфера), однако, в отсутствие затравочных центров, кристаллизация в этой области не начинается. При этом в ростовой установке возникают (определяемые конструкцией теплового узла) квазистационарные условия с определённым градиентом температурного поля, обеспечивающим возникновение и поддержание устойчивых ламинарных потоков расплава. Отмечено, что на кристаллах больших диаметров, помимо ламинарных перемешивающих потоков в объёме расплава, вблизи фронта кристаллизации дополнительно формируется некоторое нечётное количество турбулентных вихрей, отвечающих за неравномерность распределения примесей в зоне формирования. В дальнейшем необходимые условия обеспечиваются, в основном, поддержанием постоянства положения уровня расплава относительно нагревателя.
5. Стабилизация потоков в системе. Система выдерживается в таком состоянии для стабилизации потоков и распределения температуры в системе. Для кремния по разным данным время выдержки может составлять от 15 минут до нескольких часов. Выдержка может проводиться как пассивно (собственно выдержка), так и активно — сопровождаясь активным изменением режимных параметров процесса.
6. Прогрев затравочного кристалла. Жёсткая или гибкая подвеска (зависит от производителя оборудования) с закреплённым на ней затравочным кристаллом необходимой структуры и ориентации опускается вниз, затравочный кристалл приводится в контакт с поверхностью расплава и выдерживается там для прогрева и оплавления зоны контакта. Если зона контакта не была полностью оплавлена до начала роста, то, возможно получение кристалла ненадлежащей структуры или ориентации, а также в дальнейшем может произойти разлом по недоплавленному месту и падение слитка в расплав.
7. Вытягивание затравочного кристалла. Начинается вытягивание затравочного кристалла вверх в холодную зону. В ходе вытягивания сначала формируется цилиндр диаметром в несколько миллиметров — продолжение затравочного кристалла, особенно важное при выращивании бездислокационных кристаллов. Диаметр оттяжки может быть неизменен по длине, хотя некоторые производители делают его ступенчатым. Диаметр финальной части призатравочного цилиндра стараются сделать минимальным (с учётом её прочности на разрыв и имеющихся возможностей по коррекции малого диаметра). Длина цилиндра для кристаллов из различных материалов, при различных требованиях по структуре и ориентации смогут колебаться от нескольких миллиметров до нескольких сотен миллиметров.
8. Вытягивание цилиндра. Затем за счёт снижения температуры и скорости вытягивания диаметр призатравочного цилиндра увеличивают до необходимой величины, после чего вытягивают цилиндр максимально возможной длины. При этом предусматривается оставление некоторого запаса расплава для финишных операций процесса роста. В случае вытягивания кристаллов большого веса некоторые производители формируют утолщения в верхней части кристалла, предназначенные для работы поддерживающих устройств. Такие устройства обычно устанавливаются на ростовые установки с жёсткой подвеской затравочного кристалла.
9. Завершающий процесс. Перед завершением процесса за счёт увеличения температуры расплава и за счёт некоторого увеличения скорости вытягивания диаметр кристалла постепенно уменьшают (длина формируемого конуса для слитков кремния диаметром более 300 мм и более может достигать 2-х диаметров).
10. Охлаждение слитка. После завершения конуса и исчерпания остатков расплава производится отрыв слитка от расплава и постепенное охлаждение слитка до заданной температуры при некоторых условиях.
Информация о работе Метод Чохральского в технологии выращивания монокристаллов кремния