Наладка и ввод в эксплуатацию воздушных выключателей

Автор работы: Пользователь скрыл имя, 07 Апреля 2013 в 12:48, реферат

Краткое описание

Электрификация обеспечивает выполнение задачи широкой комплексной механизации и автоматизации производственных процессов, что позволяет усилить темпы роста производительности общественного труда, улучшить качество продукции и облегчить условия труда. На базе использования электроэнергии ведется техническое перевооружение промышленности, внедрение новых технологических процессов и осуществление коренных преобразований в организации производства и управлении им.

Содержание

ведение 4
1 Общая часть 6
1.1 Характеристика механического цеха 6
1.2 Существующая схема электроснабжения механического цеха 8
2 Технологическая часть 10
2.1 Определение электрических нагрузок, расчёт электрического
освещения 10
2.2 Построение картограммы нагрузок 12
2.3 Выбор схемы внешнего электроснабжения 13
2.4 Выбор сечений воздушных и кабельных линий для внешнего
электроснабжения 14
2.5 Технико-экономическое обоснование вариантов схем
электроснабжения 16
2.6 Выбор числа и мощности цеховых трансформаторов с учётом компенсации реактивной мощности 16
2.7 Выбор схемы цеховой распределительной сети 18
2.8 Конструктивное исполнение цеховых распределительных сетей 20
2.9 Расчёт токов короткого замыкания 21
2.10 Выбор сечений проводов и жил кабелей 23
2.11 Выбор комплектных шинопроводов 24
2.12 Выбор распределительных шкафов и пунктов 24
2.13 Выбор аппаратуры управления и защиты 25
3 Специальная часть. Наладка и ввод в эксплуатацию воздушных
выключателей 27
3.1 Осмотры и ревизия воздушных выключателей 35
3.2 Текущий ремонт и периодическое опробование 36
3.3 Электрические испытания выключателей 37
3.4 Проверка расхода воздуха на утечки и вентиляцию 40
3.5 Техника безопасности при эксплуатации и наладке воздушных выключателей 42
4 Экономическая часть 45
4.1 Организация и планирование эксплуатации и ремонта
электрооборудования 45
4.2 Составления плана по труду 47
4.3 Расчёт планового фонда заработной платы на обслуживание
энергохозяйства механического цеха 48
4.4 Расчёт плановой сметы годовых эксплуатационных расходов на
обслуживание энергохозяйства механического цеха 49
4.5 Калькуляция себестоимости энергии 51
5 Охрана труда и противопожарная защита 53
6 Гражданская оборона 56
Список литературы 60

Прикрепленные файлы: 1 файл

Диплом Рахтаева готово.doc

— 7.62 Мб (Скачать документ)

 

          Принцип гашения дуги сжатым воздухом заключается в том, что межконтактный промежуток обдувается чистым сжатым воздухом, лишенным заряженных частиц. При этом дуга и ее опорные поверхности интенсивно охлаждаются, а ее сечение уменьшается. Одновременно этот же поток воздуха выносит из межконтактного промежутка продукты горения дуги, представляющие собой хорошо проводящую среду. Место этих продуктов теперь занимает свежий неионизированный воздух, способный выдержать напряжение, восстанавливающееся на контактах выключателя. Задача дугогасительной камеры заключается в быстром и полном замещении ионизированной среды свежим, обладающим высокой электрической прочностью воздухом.

          Существует два типа дугогасительных камер, получивших распространение на практике. В камерах первого типа поток сжатого воздуха параллелен стволу дуги. Это так называемая камера продольного дутья (рисунок 3.1 б, в). В других — поток гасящего воздуха перпендикулярен оси ствола дуги. Их называют камерами поперечного дутья (рисунок 3.1 а).

 

 

1 - контакты, 2 - изоляционный корпус; 3 - дуга; 4 - изоляционное сопло

 

Рисунок  3.1. Схемы дугогасительных  устройств с воздушным дутьем

 

         Камеры продольного дутья имеют преимущественное распространение во всем диапазоне напряжений от 3 до 750 кВ, на которые строятся выключатели, так как они позволяют создать аппарат, отвечающий самым жестким требованиям по номинальной мощности отключения, номинальному току и быстродействию. Камеры поперечного дутья из-за громоздкости конструкции и больших габаритов применяются ограниченно, лишь в выключателях 6—20 кВ.

         Отключающая способность воздушного выключателя ограничивается появлением обратного подпора давления. Большие токи короткого замыкания дросселируют поток дутья, создавая за соплом противодавление из-за чрезмерного нагревания сжатого воздуха. При этом возникает «закупорка» сопла, и дутье резко ухудшается. Число повторных зажиганий дуги зависит от того, будет ли противодавление, возникшее после первой полуволны тока, повышаться дальше. Хорошо рассчитанные и сконструированные выключатели гасят дугу уже после первой полуволны, самое позднее — после третьего перехода тока через нуль.

          Было предложено для ускорения повышения электрической прочности дугового промежутка добавлять в свежий воздух электроотрицательные газы, жадно поглощающие электроны (например, фтор и его соединения). Однако практического использования этого предложения не было.

          Простым средством повышения отключающей способности воздушных выключателей и улучшения их эксплуатационных свойств является повышение давления воздуха, применяемое в последних конструкциях.

          Воздушные выключатели строятся на все напряжения от 3 до 750 кВ, на номинальные токи до 4 кА (генераторные выключатели до 12 кА) и на широкий диапазон мощностей отключения от 300 MBА (10 кВ) до 50 000 MBА (750 кВ).

          В выключателях на большие номинальные токи (рисунок 3.2, б) имеются главный и дугогасительный контуры, как и в маломасляных выключателях МГ и ВГМ. Основная часть тока во включенном положении выключателя проходит по главным контактам 4, расположенным открыто.

1 - резервуар со сжатым воздухом; 2 - дугогасительная камера; 3 - шунтирующий резистор; 4 - главные контакты; 5 - отделитель; 6 - емкостный делитель напряжения

 

Рисунок 3.2. Конструктивные схемы воздушных выключателей (а - д).

                      

          В выключателях для открытой установки дугогасительная камера расположена внутри фарфорового изолятора, причем на напряжение 35 кВ достаточно иметь один разрыв на фазу (рисунок 3.2, в), на 110 кВ — два разрыва на фазу (рисунок 3.2, г). Различие между этими конструкциями состоит в том, что в выключателе 35 кВ изоляционный промежуток создается в дугогасительной камере 2, а в выключателях напряжением 110 кВ и выше после гашения дуги размыкаются контакты отделителя 5 и камера отделителя остается заполненной сжатым воздухом на все время отключенного положения, при этом в дугогасительную камеру сжатый воздух не подается и контакты в ней замыкаются. По конструктивной схеме (рисунок 3.2, г) созданы выключатели серии ВВ на напряжение 110- 500 кВ. Чем выше номинальное напряжение и чем больше отключаемая мощность, тем больше разрывов необходимо иметь в дугогасительной камере и в отделителе (на 330 кВ - восемь; на 500 кВ - десять).

          В рассмотренных конструкциях воздух подается в дугогасительные камеры из резервуара, расположенного около основания выключателя. Если контактную систему поместить в резервуар сжатого воздуха, изолированный от земли, то скорость гашения дуги значительно увеличится. Такой принцип заложен в основу серии выключателей ВВБ (рисунок 3.2, д). В этих выключателях нет отделителя. При отключении выключателя дугогасительная камера 2, являющаяся одновременно резервуаром сжатого воздуха, сообщается с атмосферой через дутьевые клапаны, благодаря чему создается дутье, гасящее дугу. В отключенном положении контакты находятся в среде сжатого воздуха. По такой конструктивной схеме созданы выключатели до 750 кВ. Количество дугогасительных камер (модулей) зависит от напряжения: 110 кВ - одна; 220, 330кВ - две; 500 кВ - четыре; 750 кВ - шесть (в серии ВВБК) [9, с.112].

          Для равномерного распределения напряжения по разрывам используют омические 3 и емкостные 6 делители напряжения.

          В цепях генераторов находят применение специальные выключатели нагрузки (ВНСГ) UH0M = 15 кВ, рассчитанные на включение генераторов при самосинхронизации (при токе равном 115 кА) и выдерживающие большие сквозные токи КЗ (480 кА). Таким выключателем можно включать и отключать генератор под нагрузкой (IНОМ = 12000 А), а также отключать токи КЗ до 31,5 кА. Выключатель ВНСГ компактно встраивается в комплектный токопровод. Гашение дуги осуществляется сжатым воздухом, имеющим давление 0,6 МПа.

          Выключатели серии ВВБ (рисунок 3.2, д) имеют изолированный от земли резервуар сжатого воздуха, внутри которого находится контактная система. Поэтому собственное время отключения этих выключат сверхвысокого напряжения меньше, чем у выключателей серии ВВ. Давление воздуха в дугогасительной камере в выключателях ВВ из-за постепенной его подачи к моменту гашения дуги равно примерно половине номинального. В выключателях ВВБ давление воздуха к моменту гашения равно номинальному, поэтому эти выключатели имеют большую мощность отключения.

          В настоящее время выключатели серии ВВБ модернизированы. Новые выключатели ВВБК (крупномодульные) работают при давлении воздуха 4 МПа, а в камере гашения дуги кроме основного дутья, как и в серии ВВБ, имеется дополнительное дутье через неподвижные контакты с продувкой продуктов горения через полые токоведущие стержни вводов. Это позволило увеличить отключаемый ток до 50 — 56 кА, а количество модулей в полюсе снизить: на 330 кВ вместо четырех модулей (ВВБ) в серии ВВБК — два модуля, на 500 кВ вместо шести модулей — четыре, на 750 кВ вместо восьми — шесть.

          Воздушные  выключатели  на напряжения  до 35 кВ, а также в воздушные  выключатели более ранних конструкций  на напряжения 110 кВ и выше дугогасительное  устройство расположено вне резервуара  со сжатым воздухом и соединяется  с ним изолированным воздухопроводом.

         Принципиальная схема такого воздушного выключателя показана на рисунке 3.3.

 

 

1- резервуар со сжатым воздухом; 2 - дутьевой клапан; 3 - электромагнит;

4 - воздухопровод; 5 - дугогасительная камера; 6 - поршень; 7, 8 - контакты;

9 - отводные каналы;   10 - цилиндр; 11 - поршень; 12, 13 - контакты отделителя;

14 - воздухопровод; 15 - клапан; 16 - электромагнит

 

Рисунок 3.3 Принципиальная схема воздушного выключателя на напряжение до

                     35 кВ

         При отключении электромагнит 3 через систему пневматических устройств открывает дутьевой клапан 2 для подвода сжатого воздуха из резервуара 1 по воздухопроводу 4 в дугогасительную камеру 5. Сжатый воздух, воздействуя на поршни 6 контактов 7, отжимает их от неподвижных контактов 8 (как это условно показано на верхнем разрыве). При размыкании контактов 7 и 8 образуется дуга, которая гасится потоком сжатого воздуха, устремляющегося из камеры 5 через отверстия (сопла) контактов 7 и 8 в газоотводные каналы 9, сообщающиеся с атмосферой. С небольшой задержкой по времени сжатый воздух поступает в цилиндр пневматического привода 10 и, воздействуя на поршень 11, размыкает контакты 12 и 13 отделителя, когда дуга уже погашена. После этого клапан 2 прекращает поступление сжатого воздуха, а контакты 7 и 8 замыкаются. При включении электромагнит 16 открывает клапан 15, сжатый воздух через изоляционный воздухопровод 14 поступает в цилиндр 10 и, воздействуя на поршень 11, замыкает контакты отделителя.

         Современный воздушный выключатель снабжают закрытым отделителем, контакты которого расположены в изоляционной оболочке, при отключении заполняемой сжатым воздухом рисунок 3.4. С воздухонаполненными отделителями изготавливают воздушные выключатели на напряжение 110 кВ и выше (до 750 кВ).

 

 

а - принципиальная схема воздушного выключателя; б - схема гашения дуги;

1 - дугогасительная камера; 2 - цилиндр привода; 3 - подвижный контакт;

4 - неподвижный контакт; 5 - колпачок; 6 - отверстия в колпачке; 7 - поршень

 

Рисунок 3.4 Воздушный выключатель с закрытым отделителем на напряжение

                      свыше 110 кВ

          Воздушные выключатели на напряжение свыше 35 кВ дугогасительное устройство и его контакты размещаются непосредственно в резервуаре со сжатым воздухом (рисунок 3.4), который создаёт необходимую электрическую прочность между разомкнутыми контактами. При размыкании подвижных контактов 6 с неподвижными 7 между ними возникает дуга. Одновременно открывается клапан 10 и сжатый воздух через сопла 9 и газоотводный канал 12 выходит из резервуара 11. Дуга потоком сжатого воздуха сдувается на дугоприёмные электроды 8 и гаснет. Клапан 10 закрывается и прекращает выход сжатого воздуха в атмосферу.        

 

1- электромагнит включения; 2 - клапан подачи сжатого воздуха;

3 - электромагнит выключения; 4- изоляционная штанга; 5 - пружина;

6 - подвижные контакты; 7 - неподвижные контакты; 8 - дугоприёмные электроды; 9 - сопло; 10 - клапан выпуска; 11 - резервуар; 12 - газоотводный канал

 

Рисунок 3.5 Принципиальная схема воздушного выключателя с закрытым

                     отделителем

 

         В одном резервуаре обычно расположены 2 последовательных разрыва, образующих в совокупности так называемый модульный дугогасящий элемент (модуль). В зависимости от конструкции и давления сжатого воздуха одним модулем можно отключать цепи при напряжениях от 110 до 250 кВ. Выключатели на большие напряжения состоят из нескольких последовательно соединённых и одновременно действующих модулей. Для равномерного распределения напряжения между разрывами в отключенном положении модули шунтируют конденсаторами

         Основные преимущества воздушных выключателей — их пожаро- и взрывобезопасность, быстродействие при включении и отключении и относительная простота конструкции. Недостаток воздушных выключателей — наличие устройств для производства и хранения запасов сжатого воздуха. Освоено производство воздушных выключателей на напряжение до 750 кВ, которые используются обычно на мощных электрических станциях и подстанциях.

        Недостатками воздушных выключателей являются необходимость компрессорной установки, сложная конструкция ряда деталей и узлов.

 

3.1 Осмотры и ревизия воздушных выключателей

 

Осмотр выключателей, находящихся под напряжением, производится 1 раз в 3 суток, причем 1 раз в месяц — в темноте. Внеочередной осмотр производится после отключения выключателем тока короткого замыкания, отключения при низких температурах (—30°С и ниже), отключения в режиме противофазы, а также любого оперативного переключения, когда есть косвенные сведения о ненормальной работе выключателя (например, слышен шум вытекающего воздуха). При очередном осмотре обращается внимание на: наличие вентиляции внутренних полостей колонок; исправность ламп сигнализации положения выключателя; отсутствие течи масла из конденсаторов емкостных делителей напряжения; неисправность шунтирующих резисторов; наличие включенных подогревателей в холодное время года; степень загрязнения и целость фарфоровых изоляторов; отсутствие выдавленных прокладок в узлах эластичного крепления изоляторов; плотность закрытия выхлопных клапанов гасительной камеры и атмосферных клапанов отделителя.

При обходе в ночное время  по видимому свечению определяется наличие  нагретых участков глазной токоведущей цепи. Если в распоряжении персонала имеется тепловизор, такую проверку можно выполнить в дневное время. После отключения выключателем тока короткого замыкания особое внимание следует уделить осмотру шунтирующих резисторов. На бетэловых резисторах модернизированных выключателей проверяется целость мембран.

   При осмотре проверяется действительное положение всех фаз воздушного выключателя по показаниям сигнальных ламп и манометров. Обращается внимание на общее состояние воздушного выключателя, на отсутствие утечек воздуха (на слух), на целость изоляторов гасительных камер, отделителей, шунтирующих резисторов и емкостных делителей напряжения, опорных колонок и изолирующих растяжек, а также на отсутствие загрязненности поверхности изоляторов.

    Контролируется степень нагрева контактных соединений шин и аппаратных зажимов.

    По манометрам, установленным в распределительном шкафу, проверяется давление воздуха в резервуарах выключателя и поступление его на вентиляцию. У выключателей, рассчитанных на номинальное давление 2 МПа и работающих с АПВ, давление должно находиться в пределах 1,9-2,15 МПа (оптимальное 2 МПа), а у выключателей без АПВ 1,6-2,1 МПа. Выключатель не должен приходить в действие при понижении давления воздуха ниже указанных значений. С этой целью в схеме управления предусмотрена блокировка, препятствующая проведению операции. При давлении ниже 1,6 МПа один из манометров размыкает цепи включения и отключения, другой при давлении ниже 1,9 МПа переключает цепи АПВ на отключение. 

Информация о работе Наладка и ввод в эксплуатацию воздушных выключателей