Автор работы: Пользователь скрыл имя, 08 Мая 2013 в 03:41, курсовая работа
Вопросы о том, как складывались первичные математические представления, какой вид они принимали, как проходили первые этапы их совершенствования, никогда не теряли своей актуальности и не потеряют ее в будущем. В том, чтобы правильно освещать эти вопросы, заинтересованы весьма широкие слои человеческого общества: и те, кто начинает свое математическое образование; и те, кто учит детей математике, так как это способствует отысканию и использованию наиболее эффективных методических приемов.
Введение………………………………………………………………………3
1 Начало формирования математики………………………………………..4
2 Древний Египет……………………………………………………………..6
2.1 Задачи математических папирусов……………………………………8
3 Вавилон…………………………………………………………………….11
4 Древняя Греция……………………………………………………………14
4.1 Древнегреческие школы ……………………………………………...19
4.1.1Элейская школа…………………………………………………….19
4.1.2 Милетская школа…………………………………………………..20
5 Индия и Арабы……………………………………………………………..22
6 Средние Века и Возрождение……………………………………………..23
7 Древняя Русь………………………………………………………………..25
Вывод ………………………………………………………………………....33
Список используемых источников………………………………………… 34
Но время шло и постепенно накопление научных сведений объективно вынуждало к тому, чтобы их упорядочить, классифицировать. То же стремление к разделению, дифференциации знаний вырастало из практики школьного обучения. Известно, что все дети свободных граждан рабовладельческих Афин и других полисов с семилетнего возраста учились в школах. Там их обучали как дисциплинам практического назначения, так и начаткам теоретического научного знания, в том числе основам теоретической арифметики и геометрии. Став взрослыми, они вследствие привилегированного положения в обществе передавали подневольным людям не только физический труд, но и решение практических задач, связанных с необходимостью счета и измерений. Такое разделение математических занятий, возникшее в силу социального неравноправия людей, ускоряло объективное течение исторического процесса дифференциации научных знаний и выделения слоя людей, занимающихся теоретическими проблемами математики. Этому же способствовало деятельность учебно-научных объединений натурфилософского направления (научных школ). Это были по преимуществу небольшие группы молодых людей, собиравшихся вокруг известных ученых; преподавание велось главным образом устно.
4.1 Древнегреческие школы
4.1.1Элейская школа
Элейская школа довольно интересна для исследования, так как это одна из древнейших школ, в трудах которой математика и философия достаточно тесно и разносторонне взаимодействуют. Основными представителями Элейской школы считают Парменида (конец VI - V в. до н.э.) и Зенона (первая половина V в. до н.э.).
Философия Парменида
заключается в следующем: всевозможные
системы миропонимания
С возражением выступил его ученик Зенон. Древние приписывали ему сорок доказательств для защиты учения о единстве сущего (против множественности вещей) и пять доказательств его неподвижности (против движения). Из них до нас дошло всего девять. Наибольшей известностью во все времена пользовались зеноновы доказательства против движения.
Аргументы Зенона приводят к парадоксальным, с точки зрения «здравого смысла», выводам, но их нельзя было просто отбросить как несостоятельные, поскольку и по форме, и по содержанию удовлетворяли математическим стандартам той поры. Разложив апории Зенона на составные части и двигаясь от заключений к посылкам, можно реконструировать исходные положения, которые он взял за основу своей концепции. Важно отметить, что в концепции элеатов, как и в дозеноновской науке, фундаментальные философские представления существенно опирались на математические принципы. Видное место среди них занимали следующие аксиомы:
1. Сумма бесконечно большого числа любых, хотя бы и бесконечно малых, но протяженных величин должна быть бесконечно большой;
2. Сумма любого, хотя
бы и бесконечно большого
Именно в силу тесной взаимосвязи общих философских представлений с фундаментальными математическими положениями удар, нанесенный Зеноном по философским воззрениям, существенно затронул систему математических знаний. Целый ряд важнейших математических построений, считавшихся до этого, несомненно, истинными, в свете зеноновских построений выглядели как противоречивые. Рассуждения Зенона привели к необходимости переосмыслить наиболее важные методические вопросы.
4.1.2 Милетская школа
Милетская школа – одна из первых древнегреческих математических школ, оказавшая существенное влияние на развитие философских представлений того времени. Она существовала в Ионии в конце V - IV вв. до н.э.; основными деятелями ее являлись Фалес (около 624-547 гг. до н.э.), Анаксимандр (около. 610-546 гг. до н.э.) и Анаксимен (около 585-525 гг. до н.э.). Рассмотрим на примере милетской школы основные отличия греческой науки от догреческой и проанализируем их. Если сопоставить исходные математические знания греков с достижениями египтян и вавилонян, то вряд ли можно сомневаться в том, что такие элементарные положения, как равенство углов у основания равнобедренного треугольника, открытие которого приписывают Фалесу Милетскому, не были известны древней математике. Тем не менее, греческая математика уже в исходном своем пункте имела качественное отличие от своих предшественников. Ее своеобразие заключается, прежде всего, в попытке систематически использовать идею доказательства. Фалес стремится доказать то, что эмпирически было получено и без должного обоснования использовалось в египетской и вавилонской математике. Возможно, в период наиболее интенсивного развития духовной жизни Вавилона и Египта, в период формирования основ их знаний, изложение тех или иных математических положений сопровождалось обоснованием в той или иной форме.
Однако, как пишет Ван дер Варден, «во времена Фалеса египетская и вавилонская математика давно уже были мертвыми знаниями. Можно было показать Фалесу, как надо вычислять, но уже неизвестен был ход рассуждений, лежащих в основе этих правил». Греки вводят процесс обоснования как необходимый компонент математической действительности – доказательность, которая действительно рассматриваемого положения, уверенность в силе человеческого являлась отличительной чертой их математики. Техникой доказательства ранней греческой математики, как в геометрии, так и в арифметике, первоначально являлась простая попытка придания наглядности. Конкретными разновидностями такого доказательства в арифметике было доказательство при помощи камешков, в геометрии - путем наложения. Но сам факт наличия доказательства говорит о том, что математические знания воспринимаются не догматически, а в процессе размышления. Это, в свою очередь, обнаруживает критический склад ума, уверенность (может быть, не всегда осознанную), что размышлением можно установить правильность или ложность Греки в течение одного – двух столетий сумели овладеть математическим наследием предшественников, накопленного в течении тысячелетий, что свидетельствует об интенсивности, динамизме их математического познания. Качественное отличие исследований Фалеса и его последователей от догреческой математики проявляется не столько в конкретном содержании исследованной зависимости, сколько в новом способе математического мышления. Исходный материал греки взяли у предшественников, но способ усвоения и использования этого материала был новый. Отличительными особенностями их математического познания являются рационализм, критицизм, динамизм. Эти же черты характерны и для философских исследований милетской школы.
5 Индия и Арабы
Преемниками греков в истории математики стали индийцы. Индийские математики не занимались доказательствами, но они ввели оригинальные понятия и ряд эффективных методов. Именно они впервые ввели нуль и как кардинальное число, и как символ отсутствия единиц в соответствующем разряде. Махавира (850 н.э.) установил правила операций с нулем, полагая, однако, что деление числа на нуль оставляет число неизменным. Правильный ответ для случая деления числа на нуль был дан Бхаскарой (р. в 1114), ему же принадлежат правила действий над иррациональными числами. Индийцы ввели понятие отрицательных чисел (для обозначения долгов). Самое раннее их использование мы находим у Брахмагупты (ок. 630). Ариабхата (р. 476) пошел дальше Диофанта в использовании непрерывных дробей при решении неопределенных уравнений.
Наша современная система
счисления, основанная на позиционном
принципе записи чисел и нуля как
кардинального числа и
Около 800 индийская математика достигла Багдада. Термин «алгебра» происходит от начала названия книги Аль-джебр вал – мукабала (Восполнение и противопоставление), написанной в 830 астрономом и математиком аль-Хорезми. В своем сочинении он воздавал должное заслугам индийской математики. Алгебра аль-Хорезми была основана на трудах Брахмагупты, но в ней явственно различимы вавилонское и греческое влияния. Другой выдающийся арабский математик Ибн аль – Хайсам (около 965–1039) разработал способ получения алгебраических решений квадратных и кубических уравнений. Арабские математики, в их числе и Омар Хайям, умели решать некоторые кубические уравнения с помощью геометрических методов, используя конические сечения. Арабские астрономы ввели в тригонометрию понятие тангенса и котангенса. Насирэддин Туси (1201–1274) в Трактате о полном четырехугольнике систематически изложил плоскую и сферическую геометрии и первым рассмотрел тригонометрию отдельно от астрономии.
6 Средние Века и Возрождение
Средневековая Европа. Римская цивилизация не оставила заметного следа в математике, поскольку была слишком озабочена решением практических проблем. Цивилизация, сложившаяся в Европе раннего Средневековья (около 400–1100), не была продуктивной по прямо противоположной причине: интеллектуальная жизнь сосредоточилась почти исключительно на теологии и загробной жизни. Уровень математического знания не поднимался выше арифметики и простых разделов из Начал Евклида. Наиболее важным разделом математики в Средние века считалась астрология; астрологов называли математиками. А поскольку медицинская практика основывалась преимущественно на астрологических показаниях или противопоказаниях, медикам не оставалось ничего другого, как стать математиками.
Около 1100 в западноевропейской
математике начался почти трехвековой
период освоения сохраненного арабами
и византийскими греками
Первым заслуживающим упоминания европейским математиком стал Леонардо Пизанский (Фибоначчи). В своем сочинении Книга абака (1202) он познакомил европейцев с индо – арабскими цифрами и методами вычислений, а также с арабской алгеброй. В течение следующих нескольких веков математическая активность в Европе ослабла. Свод математических знаний той эпохи, составленный Лукой Пачоли в 1494, не содержал каких-либо алгебраических новшеств, которых не было у Леонардо.
Возрождение. Среди лучших геометров эпохи Возрождения были художники, развившие идею перспективы, которая требовала геометрии со сходящимися параллельными прямыми. Художник Леон Баттиста Альберти (1404–1472) ввел понятия проекции и сечения. Прямолинейные лучи света от глаза наблюдателя к различным точкам изображаемой сцены образуют проекцию; сечение получается при прохождении плоскости через проекцию. Чтобы нарисованная картина выглядела реалистической, она должна была быть таким сечением. Понятия проекции и сечения порождали чисто математические вопросы. Например, какими общими геометрическими свойствами обладают сечение и исходная сцена, каковы свойства двух различных сечений одной и той же проекции, образованных двумя различными плоскостями, пересекающими проекцию под различными углами? Из таких вопросов и возникла проективная геометрия. Ее основатель – Ж.Дезарг (1593–1662) с помощью доказательств, основанных на проекции и сечении, унифицировал подход к различным типам конических сечений, которые великий греческий геометр Аполлоний рассматривал отдельно.
7 Древняя Русь
Многие и по сию пору уверены, что в допетровскую эпоху на Руси вообще ничему не учили. Более того, само образование тогда якобы преследовала церковь, требовавшая только, чтобы ученики кое-как твердили наизусть молитвы и понемногу разбирали печатные богослужебные книги. Да и учили, мол, лишь детей поповских, готовя их к принятию сана. Те же из знати, кто верил в истину «учение - свет...», поручали образование своих отпрысков выписанным из-за границы иностранцам. Остальные же обретались «во тьме незнания».
Все это опровергает Мордовцев. В своих исследованиях он опирался на любопытный исторический источник, попавший к нему в руки, - «Азбуковник». В предисловии к монографии, посвященной этой рукописи, автор написал следующее: «В настоящее время я имею возможность пользоваться драгоценнейшими памятниками 17 – го века, которые еще нигде не были напечатаны, не упомянуты и которые могут послужить к объяснению интересных сторон древней русской педагогики. Материалы эти заключаются в пространной рукописи, носящей название «Азбуковника» и вмещающей в себя несколько разных учебников того времени, сочиненных каким-то «первопроходцем», отчасти списанных с других, таких же, изданий, которые озаглавлены, были тем же именем, хотя и различались содержанием и имели различный счет листов».
Исследовав рукопись, Мордовцев делает первый и важнейший вывод: в Древней Руси училища как таковые существовали. Впрочем, подтверждает это и более древний документ - книга «Стоглав» (собрание постановлений Стоглавого Собора, проходившего с участием Ивана IV и представителей Боярской думы в 1550 – 1551 годах). В ней содержатся разделы, говорящие об образовании. В них, в частности, определено, что училища разрешено содержать лицам духовного звания, если соискатель получит на то разрешение у церковного начальства. Перед тем, как выдать ему таковое, надлежало провести испытания основательности собственных познаний претендента, а от надежных поручителей собрать возможные сведения о его поведении.
Но как были устроены училища, как управлялись, кто в них обучался? На эти вопросы «Стоглав» ответов не давал. И вот в руки историка попадает несколько рукописных «Азбуковников» - книг весьма любопытных. Несмотря на свое название, это, по сути, не учебники (в них нет ни азбуки, ни прописей, ни обучения счету), а скорее руководство для учителя и подробнейшие наставления ученикам. В нем прописан полный распорядок дня школяра, кстати, касающийся не только школы, но и поведения детей за ее пределами.
Из «Азбуковника» мы узнаем очень важный факт: образование в описываемые времена не было на Руси сословной привилегией. В рукописи, от лица «Мудрости», содержится призыв к родителям разных сословий отдавать отроков для обучения «прехитрой словесности»: «Сего ради присно глаголю и глаголя не престану людям благочестивым во слышание, всякого чина же и сана, славным и худородным, богатым и убогим, даже и до последних земледельцев». Ограничением к обучению служили лишь нежелание родителей либо уж совершеннейшая их бедность, не позволявшая хоть чем-нибудь оплатить учителю за обучение чада.
Но последуем за учеником, вошедшим в училище и уже положившим свою шапку на «общую грядку», то есть на полку, поклонившимся и образам, и учителю, и всей ученической «дружине». Школяру, пришедшему в школу ранним утром, предстояло провести в ней целый день, до звона к вечерней службе, который был сигналом и к окончанию занятий.