Ионно-плазменные процессы нанесения пленок

Автор работы: Пользователь скрыл имя, 17 Января 2013 в 16:52, лекция

Краткое описание

Возросшие требования к степени интеграции, надежности и характеристикам ИС привели к необходимости использования наряду с традиционными (технологии термического нанесения и химического осаждения из парогазовой фазы) новых плазменных технологий нанесения покрытий. Плазменные технологии можно разделить на следующие группы: плазмохимическое, ионно-плазменное и ионно-лучевое осаждение. Поскольку применение традиционных технологий достаточно широко описано в научно-технической литературе, кратко остановимся на аспектах, позволяющих сравнивать традиционные и плазменные технологии.

Прикрепленные файлы: 1 файл

7. ионно-плазменные процессы нанесения пленок.doc

— 349.50 Кб (Скачать документ)

Как и в случае пленок W сопротивление  пленок WxSi1-x снижается при последующих за осаждением термообработках в среде азота, что, по-видимому, связано с выделением из пленки захваченных в процессе роста водорода и фтора.

3. Осаждение нитрида кремния.  С этой целью обычно используются исходные реагенты в виде силана и аммиака или азота, и реакция в обобщенном виде выглядит так:

 

SiH4 + NH3 (или N2) SixNyHz + H2.   (7.14)

 

В таких процессах  обычно получают пленки нестехиометрического состава (отношение x/y не равно 3/4), что может являться достоинством или недостатком в зависимости от предполагаемого применения. Стехиометрические пленки образуются при повышенных значениях мощности, температуры и отношения NH3/SiH4. Когда в качестве источника азота используется N2, то из-за его значительно меньшей скорости диссоциации по сравнению с SiH4 нужен большой избыток азота (N2/SiH4>102), чтобы избежать образования обогащенной кремнием пленки. Аммиак, напротив, может диссоциировать многоступенчато с потреблением малой энергии, что обеспечивает рост пленки активным азотом. Поэтому отношение NH3/SiH4 существенно ниже и находится в диапазоне 5–20. Скорость осаждения возрастает с увеличением мощности разряда и составляет 10–20 нм/мин.

В пленках нитрида  кремния, полученных в процессах  ПХО, обнаружено большое количество водорода в виде связи Si – H и N – H. По этой причине в реакции нитрид кремния записан как SixNyHz. Общее количество связанного водорода изменяется в зависимости от температуры осаждения и составляет 18–22 ат % в диапазоне температур 380–275 °С при осаждении из смеси силан – аммиак. При использовании азота содержание водорода в 1,5–2 раза меньше. Наличие связанного водорода приводит к отличию свойств пленки от свойств осажденного из парогазовой фазы нитрида кремния, а именно, обнаружено небольшое снижение плотности, напряжения электрического пробоя и удельного сопротивления.

4. Осаждение диоксида кремния. В этом случае используются силан и закись азота или кислород:

 

SiH4 + 2N2O SiO2 + 2N2 + 2H2.  (7.15)

 

В таких процессах  в пленках SiO2 обнаружены связанные водород и азот – 5–10 ат % и 2–4 ат % соответственно. Отклонение от стехиометричности пленок мало (отношение концентрации O к Si не ниже 1,91). Стехиометрический состав и показатель преломления 1,46,  равный его величине для термического диоксида, получены в плазме смеси силана с кислородом при низкой температуре осаждения и малой мощности разряда. Скорость осаждения диоксида кремния в процессах ПХО составляет 15–40 нм/мин.

 

7.4. ИОННО-ПЛАЗМЕННОЕ  НАНЕСЕНИЕ ПОКРЫТИЙ

 

Технология ионно-плазменного  нанесения (ИПН) основана на процессе физического  распыления поверхности материала (мишени), из которого необходимо создать пленку, ионами инертного газа, генерируемыми в контактирующей с распыляемым материалом низкотемпературной газоразрядной плазме. Поток распыленных частиц осаждается на приемную подложку, формируя пленочное покрытие. Процесс образования и роста пленки сопровождается бомбардировкой подложки атомами и ионами инертного газа, а также электронами и фотонами, т. е. стимулируется плазменным разрядом. Если плазма создана в смеси инертного и химически активного (реактивного) газов, то технологию называют реактивным ионно-плазменным нанесением (РИПН). В этом случае подложку кроме распыленных частиц и частиц инертного газа бомбардируют химически активные частицы (ХАЧ) или же ХАЧ образуются на самой подложке при диссоциации адсорбированных молекул реактивного газа под стимулирующим воздействием плазмы. Такие условия процесса приводят к формированию пленок химических соединений: оксидов, нитридов и карбидов материала мишени.

Простейшим устройством для  реализации технологии ИПН является диодная система с тлеющим разрядом на постоянном токе. Распыляемым материалом является материал катода. Подложки могут быть расположены как на аноде, так и на боковых стенках разрядной камеры.

Физические процессы, сопровождающие ИПН, можно разделить на три группы: процессы распыления поверхности мишени, процессы переноса распыленного материала к поверхности подложки и процессы формирования пленки на подложке. Рассмотрим эти процессы и их влияние на свойства осаждаемых покрытий.

 

7.4.1. Распыление мишени

 

Механизм и основные характеристики процесса физического  распыления (коэффициент распыления S и скорость распыления vр) рассмотрены в 3.5. Здесь отметим лишь особенности распыления мишени и характеристики распыленных частиц, представляющие интерес для условий формирования пленок.

Первоначально в технологии ИПН  и РИПН были распространены диодные системы на постоянном токе для распыления металлов и полупроводников, а также на ВЧ-токе для распыления диэлектрических мишеней. Широкое промышленное внедрение таких систем ограничивалось низкими скоростями распыления и, следовательно, малыми скоростями осаждения 0,2–2 нм/с, высоким напряжением горения разряда 2–5 кВ и высоким рабочим давлением 1–10 Па, что снижало производительность технологии и препятствовало получению пленок с минимальным уровнем загрязнений и радиационных дефектов. Положение коренным образом изменилось после появления магнетронных распылительных систем (МРС) – диодных систем, в которых у поверхности мишени создавалось магнитное поле, перпендикулярное электрическому. Взаимодействие полей в сочетании с формой распыляемой поверхности создает такую конфигурацию магнитных ловушек для электронов, при которой токи дрейфа электронов замыкаются на себя. Это обеспечивает высокую степень ионизации газа в МРС, т.е. высокую плотность ионного потока на мишень и, как следствие, повышение vр не менее чем на порядок, снижение напряжения горения разряда до 0,3–0,8 кВ и давления до 0,1–1 Па, что увеличило чистоту наносимой пленки и снизило радиационные повреждения подложки и пленки.

Главным фактором, ограничивающим vр, является максимальный поток мощности, который может быть подан на мишень, не вызывая ее плавления, растрескивания или сублимации. Для металлов с хорошей теплопроводностью допустимая плотность мощности определяется возможностями водяного охлаждения мишени и может составлять до сотен Вт/см2, что соответствует скорости распыления             1–5 мкм/мин.

В отличие от процесса термического нанесения, при котором средняя  энергия испаренных частиц составляет доли эВ, средняя энергия распыленных частиц Eр лежит в диапазоне 10–90 эВ, основная часть этих частиц имеет энергию 3–15 эВ. В энергетическом спектре распыленных частиц наблюдается также высокоэнергетический хвост в сотни эВ, однако количество таких частиц относительно мало и не превышает одного процента. Для используемых обычно мишеней из поликристаллических материалов угловое распределение распыленных атомов при напряжениях, близких к 1 кВ, в первом приближении описывается законом косинуса. При снижении напряжения до          0,4–0,5 кВ наблюдается «подкосинусное» распределение распыленных атомов, когда большее число частиц распыляется параллельно поверхности мишени и меньшее – перпендикулярно. Скорость распыления возрастает с увеличением мощности разряда и имеет максимум в зависимости от давления инертного газа. Максимум vр достигается при давлениях 0,5–0,8 Па. Рост vр с изменением давления от 0,1 до   0,5 Па обусловлен ростом плотности ионного потока на поверхность мишени. Спад vр при давлениях выше 0,8 Па связан с увеличением вероятности возвращения распыленных атомов на мишень в результате процессов обратной диффузии и обратного рассеяния (отражения) на атомах инертного газа. В процессах РИПН, когда распыление мишени происходит в смеси инертного и реактивного газов, vр в 3–5 раз ниже, что связано с образованием на поверхности мишени химического соединения частиц мишени и реактивного газа (оксида, нитрида, карбида и т. д.), коэффициент распыления которого всегда меньше нежели чистого материала мишени. Очевидно, что с ростом парциального давления реактивного газа vр падает.

 

7.4.2. Перенос распыленного вещества

 

Процесс переноса распыленного материала от мишени до подложки зависит от средней энергии распыленных частиц, их углового распределения, давления рабочего газа p, расстояния между распыляемой и приемной поверхностями d, а также от наличия в некоторых случаях электрических и магнитных полей, определяющих движение ионизированных в плазме атомов распыленного материала. Для используемых на практике давлений p длина свободного пробега распыленных частиц не превышает нескольких мм, что всегда меньше расстояния d. Среднее число столкновений, после которых энергия распыленных атомов станет равной тепловой энергии атомов или молекул рабочего газа, а также длина направленного пробега Lp распыленных атомов, на которой они «погасят» свою избыточную энергию, зависят от соотношения масс распыленных атомов ma и частиц газа mг. Величина Lp растет с ростом ma и составляет при p = 0,5 Па от 3 до 15 см при распылении материалов от Al до Au в аргоне. Изменяя величины p и d, можно в достаточно широких пределах менять энергию конденсирующихся на подложке частиц, следовательно, характеристики    пленки.

 

7.4.3. Формирование пленки

 

Основными факторами, определяющими процесс формирования пленки при ИПН, являются энергия и величина потока конденсируемых и активирующих частиц, форма и взаимное расположения мишени и подложки, а также состав газовой смеси при РИПН. Благодаря зависимости энергии и потоков сталкивающихся с подложкой частиц от параметров газового разряда (напряжение и ток разряда, давление и состав рабочего газа), положения подложки и ее потенциала (смещения) относительно плазмы, возможности управления кинетикой образования и роста пленок, следовательно, свойствами пленок и характеристиками контакта пленка – подложка значительно шире, нежели в остальных методах осаждения.

Следует отметить, что  процессы ИПН и РИПН относятся  к низкотемпературным, т. е. температура подложки в процессе осаждения лежит в интервале 50–200 °С в зависимости от условий процесса. Дополнительный нагрев подложки внешними источниками является еще одним фактором управления свойствами пленок.

Относительно высокая  энергия конденсирующихся частиц и  наличие активирующего воздействия на подложку (основной вклад вносит ионная бомбардировка) привели к следующим особенностям формирования пленок:

  • образование переходного слоя (ПС) на границе раздела пленка - подложка;
  • сплошные пленки образуются при их минимальных толщинах, причем обладают меньшим размером зерен и большей плотностью, чем термически нанесенные;
  • рост пленки происходит при любой плотности потока конденсирующихся частиц на подложку.

Образование ПС, т. е. отсутствие резкой границы между материалом пленки и подложки, обусловлено как частичным внедрением распыленных частиц в подложку, так и высокой скоростью диффузии частиц пленки по радиационным дефектам поверхностного слоя подложки. Наличие ПС приводит к высокой адгезии пленки (адгезия – сила, которую нужно приложить к единице площади пленки, чтобы оторвать ее от подложки). Например, адгезия Al на SiO2 в 10 раз выше, чем для технологии термического нанесения. При образовании ПС происходит изменение электрофизических параметров контакта. Можно получить невыпрямляющие контакты к легированным полупроводникам без высокотемпературной обработки, снизить переходное сопротивление контакта. Указанные выше вторая и третья особенности формирования пленок при ИПН обусловлены активирующим воздействием плазмы, приводящим к высокой плотности зародышеобразования на поверхности подложки.

 

7.4.4. Применение ИПН и РИПН в технологии СБИС

 

Ионно-плазменное нанесение  нашло широкое применение практически на всех этапах изготовления СБИС при создании токопроводящих систем, диэлектрических и технологически вспомогательных покрытий. Остановимся на основных технологических аспектах ИПН и РИПН, связанных с требованиями к пленочным покрытиям СБИС.

Требование к комфорности покрытия удовлетворяют путем подачи на подложку отрицательного смещения в диапазоне 30-200 В или путем предварительного нагрева подложки, а также в редких случаях осаждением в смесь Ar + H2. Бомбардировка растущей пленки ионами Ar или повышенная температура подложки стимулируют подвижность поверхностных атомов и, кроме этого, вследствие вторичного распыления происходит перераспределение осаждаемой пленки. Поскольку скорость вторичного распыления значительно выше для ионов, поступающих на подложку под малыми углами падения, чем для ионов, падающих под прямым углом, происходит удаление материала с выступающих частей. Таким образом, материал со дна ступеньки перераспределяется на стенки.

Наличие отрицательного смещения на подложке позволяет удалить с ее поверхности слабосвязанные молекулы адсорбированных газов, оксиды и другие загрязнения, что повышает адгезию пленки и степень загрязнений газовыми включениями.

Требования к минимуму внутренних механических напряжений пленок также  можно удовлетворить подачей  смещения. Изменяя величину смещения, можно получить как растягивающие, так и сжимающие напряжения. Смещение, при котором напряжения минимальны, строго индивидуально для данного металла и используемой системы осаждения. Кроме этого, величина и тип напряжения в пленке определяются давлением рабочего газа в процессе осаждения и в меньшей мере – скоростью осаждения. Например, при ИПН пленки Mo изменение p от 0,1 до 1 Па приводило к переходу от сжимающих, величиной 300 Н/м, до растягивающих, величиной 100 Н/м, напряжений. Нулевое значение напряжения получено при p=0,6 Па. Уменьшает внутренние напряжения в пленках Ti и W добавка N2 к Ar в количестве нескольких процентов. Одновременно такая добавка улучшает их барьерные свойства.

Использование отрицательного смещения имеет свой недостаток при осаждении металлов на сверхтонкие слои диэлектрика в процессах создания МДП-структур. В этом случае вероятен пробой диэлектрика при эксплуатации ИС. К такому же явлению может привести близкое расположение подложки при нанесении металла   из-за высокой энергии достигающих подложку распыленных частиц.

Технология ИПН полностью удовлетворяет требованиям к контактным и проводящим слоям, когда в качестве последних используются не только металлы, но и их сплавы (например, Al с Cu, Ti или Si) и силициды тугоплавких металлов. Для формирования покрытий из сплавов и силицидов обычно используется одновременное распыление нескольких мишеней и реже распыление композиционной мишени. При одновременном распылении мишеней содержание каждого элемента в пленке регулируют путем изменения мощности, прикладываемой к каждой мишени. Используя одновременное распыление, получают сплавы Cr-Ag, Ni-Ag и Cu-Ag. Эти сплавы сохраняют способность к пайке в течение нескольких недель при комнатной температуре, что позволяет применить низкотемпературную пайку кристаллов в корпус без облуживания благородным металлом. Получаемый одновременным распылением сплав Al-Cu-Si обладает высокой стойкостью к электромиграции и коррозии.

Информация о работе Ионно-плазменные процессы нанесения пленок