Автор работы: Пользователь скрыл имя, 25 Октября 2012 в 11:24, курсовая работа
Банки играют важную роль в сохранении стабильности денежно-кредитной системы за счет тесного взаимодействия с государственными органами, выполнения возложенных на кредитные учреждения контрольных и регулирующих функций.
Кредитование является банковской услугой, которая приносит наибольшее количество прибыли. Между тем при совершении кредитных операций у банка возникают высокие риски.
Введение 3
Глава 1. Особенности формирования кредитной политики
коммерческого банка
1.1. Теоретические основы формирования кредитной политики
коммерческого банка 5
1.2. Основные принципы формирования кредитной политики
коммерческого банка 10
Глава 2. Анализ кредитной политики коммерческого банка на примере
открытого акционерного общества «Сбербанк России»
2.1. Организационно-экономическая
характеристика ОАО «Сбербанк России» 17
2.2. Оценка качества кредитного портфеля
ОАО «Сбербанк России» 24
2.3. Особенности кредитной политики ОАО «Сбербанк России» 33
Глава 3. Пути совершенствования кредитной политики
ОАО «Сбербанк России» 37
Заключение 45
Список использованной литературы 48
Приложения
На сегодняшний день известно достаточно много методик кредитного скоринга. Одной из самых известных является модель Дюрана. Дюран определил группы факторов, позволяющих максимально определить степень кредитного риска. Но эта модель как любая другая не идеальна и имеет ряд недостатков.
Основным недостатком скоринговой системы оценки кредитоспособности физических лиц является то, что она очень формализована, плохо адаптируема. Хорошая методика для оценки кредитоспособности система, должна отвечать реальному положению дел. Например, в США считается плюсом, если человек поменял много мест работы, что говорило о том, что он востребован. В других станах наоборот - данное обстоятельство говорит о том, что человек либо не может ужиться с коллективом, либо это малоценный специалист, а соответственно повышается вероятность просрочки в платежах.
Таким образом адаптировать модель просто крайне необходимо, как для разных периодов времени, так и для разных стран и даже для разных регионов страны.
Для адаптации скоринговой модели оценки кредитоспособности физических лиц специалисту необходимо проделывать путь, подобный тому, что проделал Дюран. То есть специалисты, которые будут заниматься такой адаптацией должны быть высоко квалифицированными, и должны профессионально оценить текущую ситуацию на рынке. Результатом проделанной работы будет набор факторов с весовыми коэффициентами плюс некий порог (значение), преодолев который, человек, обратившийся за кредитом, считается способным погасить испрашиваемую ссуду плюс проценты. Полученные результаты являются по большей части субъективным мнением и, как правило, плохо подкреплены статистикой, то есть являются статистически необоснованные.
Чтобы обеспечить качество исходных данных, необходимо придерживаться следующего алгоритма:
Именно с помощью такого подхода составлены анкеты - заявки на получение кредита. Экспертами в данной области были выявлены факторы, наиболее влияющие на результат. Эту информацию и заполняют в анкетах потенциальные заемщики. Помощь в проверке гипотез может оказать реализованный в Deductor факторный анализ. Данный инструмент выявляет значимость тех или иных факторов.
Итак, задача заключается в построении модели оценки (классификации) потенциальных заемщиков. Решение задачи также должно обладать большой достоверностью классификации, возможностью адаптации к любым условиям, простотой использования модели.
Пользуясь приведенной методикой, была предложена гипотеза о том, какие факторы влияют на кредитоспособность человека. По мнению экспертов, по этим факторам можно учесть суммарный риск. Тем самым должно достигаться и отнесение потенциального заемщика к способным вернуть кредит или не способным.
"Дерево решений"
- один из методов
Сущность метода заключается в следующем: на основе данных, за прошлые периоды строится "дерево". При этом класс каждой из ситуаций, на основе которых строится "дерево", заранее известен. В нашем случае должно быть известно, была ли возвращена основная сумма долга и проценты, и не было ли просрочек в платежах.
При построении "дерева" все известные ситуации обучающей выборки сначала попадают в верхний узел, а потом распределяются по узлам, которые в свою очередь также могут быть разбиты на дочерние узлы. Критерий разбиения - это различные значения какого-либо входного фактора. Для определения поля, по которому будет происходить разбиение, используется показатель, называемый энтропия - мера неопределенности. Выбирается то поле, при разбиении по которому устраняется больше неопределенности. Неопределенность тем выше, чем больше примесей (объектов, относящихся к различным классам) находятся в одном узле. Энтропия равна нулю, если в узле будут находиться объекты, относящиеся к одному классу.
Полученную модель используют при определении класса (Давать / Не давать кредит) вновь возникших ситуаций (поступила заявка на получение кредита).
При существенном изменении текущей ситуации на рынке, "дерево" можно перестроить, т.е. адаптировать к существующей обстановке.
Для демонстрации подобной технологии будет использоваться программа Tree Analyzer из пакета Deductor ver.3. В качестве исходных данных была взята выборка, состоящая из 1000 записей, где каждая запись - это описание характеристик заемщика плюс параметр, описывающий его поведение во время погашения ссуды.
При обучении дерева использовались следующие факторы, определяющие заемщика: "N Паспорта"; "ФИО"; "Адрес"; "Размер ссуды"; "Срок ссуды"; "Цель ссуды"; "Среднемесячный доход"; "Среднемесячный расход"; "Основное направление расходов"; "Наличие недвижимости"; "Наличие автотранспорта"; "Наличие банковского счета"; "Наличие страховки"; "Название организации"; "Отраслевая принадлежность предприятия"; "Срок работы на данном предприятии"; "Направление деятельности заемщика"; "Срок работы на данном направлении"; "Пол"; "Семейное положение"; "Количество лет"; "Количество иждивенцев"; "Срок проживания в данной местности"; "Обеспеченность займа"; "Давать кредит".
Целевым полем является поле "Давать кредит", принимающий значения "Да" (True) и "Нет" (False). Эти значения можно интерпретировать следующим образом: "Нет" - плательщик либо сильно просрочил с платежами, либо не вернул часть денег, "Да" - противоположность "Нет". Факторы для построения дерева были собраны и консолидированы в хранилище данных Deductor Warehouse.
Методология хранилища такова, что информация хранится в процессах, каждый процесс имеет определенный набор измерений и фактов. Т.е. процесс реализован по стандартной схеме "Звезда", в центре которой хранятся факты, а измерения являются лучами. В данном случае процесс отображает выдачу кредита заемщику. Наиболее ценной информацией процесса является статус кредита. Хороший кредит - тот, который заемщик вернул в срок и в полном объеме, плохой - обратная ситуация.
При построении модели оценки кредитоспособности огромную помощь эксперту окажет разнообразная аналитическая отчетность. Поскольку данные в хранилище представлены в многомерном виде, то, несомненно, наиболее удобно получать отчетность в виде набора срезов кросс - таблиц.
Анализируя полученное дерево решений можно сделать вывод, что при помощи дерева решений можно проводить анализ значащих факторов. Такое возможно благодаря тому, что при определении параметра на каждом уровне иерархии, по которому происходит разделение на дочерние узлы, используется критерий наибольшего устранения неопределенности. Таким образом, более значимые факторы, по которым проводится классификация, находятся на более близком расстоянии (глубине) от корня дерева, чем менее значимые. Например, фактор "Обеспеченность займа" более значим, чем фактор "Срок проживания в данной местности". Фактор "Основное направление расходов" значим только в сочетании с другими факторами. Еще одним интересным примером значимости различных факторов служит отсутствие в построенном дереве параметра "Наличие автотранспорта", что говорит о том, что на сегодняшний день это наличие не является определяющим при оценке кредитоспособности физического лица.
Можно заметить, что такие показатели как "Размер ссуды", "Срок ссуды", "Среднемесячный доход" и "Среднемесячный расход" вообще отсутствуют в полученном дереве. Данный факт можно объяснить тем, что в исходных данных присутствует такой показатель как "Обеспеченность займа", и т.к этот фактор является точным обобщением четыре вышеописанных показателей, алгоритм построения дерева решений выбрал именно его.
Очень важной особенностью построенной модели является то, что правила, по которым определяется принадлежность заемщика к той или иной группе записаны на естественном языке.
Правильно построенное на данных прошлых периодов дерево решения обладает одной еще очень важной особенностью. Эта особенность называется способность к обобщению. То есть если возникает новая ситуация (обратился потенциальный заемщик), то, скорее всего, такие ситуации уже были и достаточно много. Вследствие чего можно с большой долей уверенности сказать, что вновь обратившийся заемщик поведет себя так же, как и те заемщики, характеристики которых очень похожи на характеристики вновь обратившегося. Также можно определять принадлежность потенциального заемщика к одному из классов. Для этого необходимо воспользоваться диалоговым окном "Эксперимент".
Используя такой подход можно устранить сразу оба вышеописанных недостатка скоринговой системы оценки кредитоспособности.
Стоимость адаптации сводится практически к минимуму за счет того, что алгоритмы построения модели классификации (дерево решений) - это самоадаптируемые модели (вмешательство человека минимально).
Качество результата
достаточно велико за счет того, что
алгоритм выбирает наиболее значимые
факторы для определения
Основные преимущества системы. Гибкая интеграция с любыми сторонними системами, т.е. получение информации для анализа и перенос результатов не вызывает проблем. Консолидация информации о заемщиках в специальном хранилище данных, то есть обеспечение централизованного хранения данных, непротиворечивости, а также обеспечение всей необходимой поддержки процесса анализа данных, оптимизированного доступа, автоматического обновления данных, использование при работе терминов предметной обрасти, а не таблиц баз данных. Широкий спектр инструментов анализа, т.е. обеспечение возможности эксперту выбрать наиболее подходящий метод на каждом шаге обработки. Это позволит наиболее точно формализовать его знания в данной предметной области.
Поддержка процесса тиражирования знаний, т.е. обеспечение возможности сотрудникам, не разбирающимся в методиках анализа и способах получения того или иного результата получать ответ на основе моделей подготовленных экспертом. Так, сотрудник, оформляющий кредиты должен ввести данные по потребителю и система автоматически выдаст решение о выдачи кредита или об отказе.
Поддержка групповой обработки информации, т.е. обеспечение возможности дать решение по списку потенциальных заемщиков. Из хранилища автоматически выбираются данные по лицам, заполнившим анкету вчера (или за какой угодно буферный период), эти данные прогоняются через построенную модель, а результат экспортируется в виде отчета (например, в виде excel файла), либо экспортируется в систему автоматического формирования договоров кредитования или писем с отказом в кредите. Это позволит сэкономить время и деньги.
Поддержка актуальности построенной модели, т.е. обеспечение возможности эксперту оценить адекватность текущей модели и, в случае каких либо отклонений, перестроить ее, используя новые данные.
Таким образом, для эффективного формирования кредитного портфеля банкам необходимо взять на вооружение передовые технологии добычи знаний и применить их для оценки потенциальных заемщиков. Благодаря этому можно будет не бояться предстоящей конкуренции на этом рынке. Подготовка решения данного вопроса сейчас позволит обкатать саму процедуру и в дальнейшем избежать ошибок и расходов в связи с массовым применением таких подходов в дальнейшем.
Заключение
В проделанной курсовой работе была рассмотрена сущность кредитной политики. Сущность кредитной политики определяется как стратегия и тактика банка по привлечению ресурсов на возвратной основе и их инвестированию в части кредитования клиентов банка. Предметной стороной реализации кредитной политики являются функциональные формы и виды кредитной политики банка. В основу классификации видов кредитной политики положены различные критерии: срок, цена кредита, тип рынка и др.
Функции кредитной политики можно условно разделить на две группы: общие, присущие различным элементам банковской политики и специфические, отличающие кредитную политику от других ее элементов.
При формировании кредитной политики банк должен учитывать ряд объективных и субъективных факторов. Таких как макроэкономические, отраслевые и региональные и внутри банковские.
Принципы кредитной политики являются основой кредитного процесса, они подразделяются: общие (научная обоснованность, оптимальность, эффективность, а также единство, неразрывная связь элементов кредитной политики); специфические принципы кредитной политики, такие как доходность, прибыльность, безопасность и надежность. Роль кредитной политики банка заключается в определении приоритетных направлений развития и совершенствования банковской деятельности в процессе аккумуляции и инвестирования кредитных ресурсов, развитии кредитного процесса и повышении его эффективности.