Лекции по "Ботанике"

Автор работы: Пользователь скрыл имя, 06 Января 2014 в 10:54, курс лекций

Краткое описание

1. Физиология и биохимия растений: предмет, цели и методы. Методические подходы в изучении функций растительного организма.
Физиология растений — наука, которая изучает процессы жизнедеятельности и функции растительного организма. Задачи: изучение закономерности жизнедеятельности растений, разработка теоретических основ для получения максимального урожая в СХ, разработка установок для осуществления процесса фотосинтеза в искусственных условиях. Основной метод познания процессов — эксперимент, опыт. Методические подходы в изучении: лабораторно-аналитический, вегетационный, полевой, меченых атомов, электронной микроскопии, электрофореза, хроматографического анализа, ультрафиолетовой и люминесцентной микроскопии, спектрофотометрии и др.

Прикрепленные файлы: 1 файл

физ раст модуль.docx

— 154.30 Кб (Скачать документ)

- в клетках снижается содержание  свободной воды, возрастает концентрация  и снижается рН вакуолярного сока, что влияет на гидратированность белков цитоплазмы и активность ферментов.

- изменяются степень дисперсности  и адсорбирующая способность  цитоплазмы, ее вязкость.

- резко возрастают проницаемость  мембран и выход ионов из  клеток, в том числе из листьев  и корней (экзоосмос); эти клетки теряют способность к поглощению питательных веществ.

При длительном завядании снижается активность ферментов, катализирующих процессы синтеза, и повышается ферментов, катализирующих гидролитические процессы, в частности распад (протеолиз) белков на аминокислоты и далее до аммиака, поли-сахаридов, а также других биополимеров. Многие образующиеся продукты, накапливаясь, отравляют организм растения. Нарушается аппарат белкового синтеза. При возрастании водного дефицита, длительной засухе нарушается нуклеиновый обмен, приостанавливается синтез и усиливается распад ДНК. В листьях снижается синтез и усиливается распад всех видов РНК, полисомы распадаются на рибосомы и субъединицы. Прекращение митоза, усиление распада белков при прогрессирующем обезвоживании приводят к гибели растения.                                                                                                              Из физиологических процессов наиболее чувствительным к недостатку влаги является процесс роста, темпы которого при нарастающем недостатке влаги снижаются значительно раньше фотосинтеза и дыхания. Ростовые процессы задерживаются даже после восстановления водоснабжения. При прогрессирующем обезвоживании наблюдается определенная последовательность в действии засухи на отдельные части растения.

Если рост побегов и листьев  в начале засухи замедляется, то корней даже ускоряется и снижается лишь при длительном недостатке воды в почве. При этом молодые верхние по стеблю листья оттягивают воду от более старых нижних, а также от плодоэлементов и корневой системы. Отмирают корни высоких порядков и корневые волоски, усиливаются процессы опробковения и суберинизации. Все это приводит к сокращению поглощения корнями воды из почвы. После длительного завядания растения оправляются медленно и функции их полностью не восстанавливаются. Затянувшееся завядание при засухе приводит к резкому снижению урожая сельскохозяйственных культур или даже к их гибели. Засухоустойчивость различных органов растений неодинакова. Так, молодые растущие листья за счет притока ассимилятов дольше сохраняют способность к синтезу, относительно более устойчивы, чем листья, закончившие рост, или старые, которые при засухе подвядают в первую очередь.

Засуха в ранние периоды развития приводит к гибели цветочных зачатков, их стерильности (белоколосица), а в более поздние — к образованию щуплого зерна (захват). При этом захват будет более вероятен при хорошо развитой к началу засухи листовой поверхности.

16. Морфолого-анатомические  и физиологические признаки засухоустойчивых  растений.

Анатомо-морфологические признаки имеют  большое значение.Чем выше расположен лист, тем более в нем выражены определенные признаки: меньше клетки и величина устьиц, большее число устьиц и жилок на единицу поверхности листа, сильнее развита палисадная паренхима. Одновременно чем выше расположен лист, тем более высокой транспирацией и большей интенсив­ностью фотосинтеза он обладает. Указанные закономерности получили название закона Заленского.

При изучении причин данного явления  выяснилось, что оно является следствием худшего водоснабжения верхних  листьев. Одновременно было показано, что у листьев растений, выращенных в более засушливых условиях, проявляются  те же изменения, как и у листьев  более верхнего яруса. В связи с этим совокупность названных анатомо-физиологических признаков получила название ксероморфной структуры. Растения, листья которых обладают ксероморфной структурой, более устойчивы к засухе. Для характеристики устойчивости того или иного растения к засухе имеет значение величина транспирационного коэффициента. Этот показатель может служить характеристикой, указывающей на более экономное расходование воды. Было подмечено, что растения, перенесшие засуху, становятся более устойчивыми к обезвоживанию. Однако если завяданию подвергается взрослое растение, темпы роста и продуктивность его снижаются. В ряде исследований показано увеличение устойчивости растений к засухе при намачивании семян в растворах микроэлементов, например, бора, меди.

Ксерофиты — растения засушливых местообитаний, которые в высокой степени обладают способностью к приспособлению процессе онтогенеза к перерывам в водоснабжении. Ксерофиты не представляют собой физиологически однородной группы. Возможность переносить резко засушливые условия достигается разными физиологическими средствами. Классификация этих растений наиболее полно разработана П.Л. Генкелем. С некоторыми упрощениями ксерофиты можно разделить на следующие группы:

1. Растения, запасающие - суккуленты, прежде все кактусы, а также растения, принадлежащие к семейству толстянковых (Crassulaceae — Sedum, Sempervivum). Эти растения накапливают влагу в толстых, мясистых стеблях или в утолщенных листьях. Листовыми суккулентами являются агавы, алоэ, очиток, молодило. К стеблевым суккулентам относятся кактусы, молочаи. Испаряющая поверхность сильно сокращена. Листья часто редуцированы, вся поверхность покрыта толстым слоем кутикулы, благодаря этому они являются ограничено транспирирующими растениями. Суккуленты обладают неглубокой, но широко распространяющейся корневой системой. Клетки корня характеризуются сравнительно низкой концентрацией клеточного сока. По мере уменьшения содержания воды в клетках интенсивность транспирации падает.

2. Эвксерофиты (настоящие ксерофиты) — растения, обладающие способностью резко сокращать транспирацию в условиях недостатка воды. Для этой группы растений характерен ряд приспособлений к сокращению потери воды: высокая эластичность цитоплазмы, низкая оводненность, высокая водоудерживающая способность и вязкость. Низкий осмотический потенциал клеточного сока позволяет поглощать воду из почвы, обделенной водой. В ряде случаев подземные органы этих растений, особенно в верхних частях, покрыты толстым слоем пробки. Иногда пробкой покрываются и стебли. Листья покрыты толстым слоем кутикулы, многие имеют волоски. Некоторые представители этой груп­пы растений имеют различные типы дополнительной защиты устьиц. К ним можно отнести расположение устьиц в ямках, закупоривание устьичных щелей восковыми и смолистыми пробочками. Соприкосновение устьичных щелей с окружающей средой уменьшается также у некоторых растений путем свертывания листьев в трубку. Вместе с тем для этой группы растений характерна в высокой степени способность переносить обезвоживание, состояние длительного завядания. Особенно хорошо переносят потерю воды растения с жесткими листьями (склерофиты), которые и в состоянии тургора имеют сравнительно мало воды. Эти растения характеризуются большим развитием механических тканей. Листья у них жесткие, что позволяет при потере тургора избежать механических повреждений. К этой группе растений относится саксаул, песчаная акация, аристида, некоторые полыни и др.

3. Гемиксерофиты (полуксерофиты) —это растения, у которых сильно развиты приспособления к добыванию воды. У них глубоко идущая, сильно разветвленная корневая система. Клетки корня обладают, как правило, высокой концентрацией клеточного сока, низким водным потенциалом. Благодаря указанным особенностям эти растения могут использовать для сбора воды очень большие объемы почвы. Их корневые системы достигают даже грунтовых вод, если последние лежат не слишком глубоко. Растения данного типа обладают хорошо развитой проводящей системой. Листья у них тонкие, с очень густой сетью жилок, что сокращает путь передвижения воды к живым клеткам листа до минимума. Это растения с очень высокой интенсивностью транспирации. Даже в очень жаркие, сухие дни они держат устьица открытыми. Благодаря высокой интенсивности транспирации температура листьев значительно понижается. К ним относятся: люцерна, дикий арбуз, шалфей, резак.

4. Растения, избегающие засуху (псевдоксерофиты). Эти растения не обладают признаками засухоустойчивости, но имеют короткий вегетационный период, приурочивая весь жизненный цикл к периоду дождей. Эфемеры переносят засуху в виде семян (маки), а эфемероиды — в виде луковиц, корневищ, клуб­ней (нарцисс, ревень и др.).

5. Пойкилоксерофиты — растения, не регулирующие своего водного режима. В период засухи эти растения впадают в состояние анабиоза. Криптобиоз — это состояние, при котором обмен веществ либо прекращается, либо резко тормозится, однако вся организация жизни сохраняется. К этой группе растений относится большинство лишайников, некоторые водоросли, папоротники и небольшое число покрытосеменных. Отличительной особенностью пойкилоксерофитов является способность протопласта при сильном обезвоживании переходить в гель. Эта группа растений может, не теряя жизнеспособности, доходить до воздушно-сухого состояния и в таком виде переносить периоды засух. После дождей растения этого типа быстро переходят к нормальной жизнедеятельности. Таким образом, обезвоживание для них является не патологией, а нормальным физиологическим состоянием.

 

17. Краткая история развития  учения о фотосинтезе. Работы  К.А. Тимирязева.

История учения об углеродном питании  растений насчитывает более 200 лет. В трактате «Слово о явлениях воздушных» М. В. Ломоносов в 1753 г. писал, что растение строит свое тело из окружающего его воздуха, поглощенного при помощи листьев. Однако открытие фотосинтеза связывают с именем английского химика Дж. Пристли, который в 1771 г. обнаружил, что на свету зеленые растения «исправляют» воздух, «испорченный» горением.

Последующими работами голландского ученого Я. Ингенхауза (1779, 1798 гг.), швейцарских Ж. Сенебье (1782, 1783 гг.) и Н. Соссюра (1804 г.) было установлено, что на свету зеленые растения усваивают из окружающей атмосферы углекислый газ и выделяют кислород.

Важную роль в изучении фотосинтеза  имели работы К. А. Тимирязева, который  показал, что свет является источником энергии для синтеза органических веществ из углекислого газа и  воды, и установил максимум поглощения хлорофилла в красной и сине - фиолетовой областях спектра. С позиций дарвинизма Тимирязев объяснял и эволюцию функций у растений, в частности эволюцию фотосинтеза, и универсальное распространение хлорофилла у автотрофных растений. Тимирязев неоднократно подчёркивал, что современные формы организмов – результат длительной приспособительной эволюции. К. А. Тимирязев исследовал зависимость фотосинтеза от интенсивности света и его спектрального состава и при этом установил, что из углекислого газа, находящегося в воздухе, растения ассимилируют углерод за счет энергии солнечного света. Им было экспериментально подтверждено, что в красных и синих лучах, которые наиболее полно поглощаются хлорофиллом, процессы проходят эффективнее. Именно Тимирязеву принадлежит идея, что хлорофилл как физически, так и химически принимает участие в процессе фотосинтеза. Далее он развил свою теорию и опубликовал работу «Зависимость усвоения углерода от интенсивности света» в 1889 году. По сути, ученый на практике доказал, что процесс фотосинтеза подчиняется закону сохранения энергии и первому закону фотохимии.

Дальнейшие исследования многих ученых с использованием современных методов  позволили вскрыть многие звенья сложной цепи превращений веществ  в растительном организме.

18. Классификация организмов  по способу питания и использования  энергии (эволюция автотрофности на Земле).

По способу питания живые  организмы можно разделить на две большие группы: автотрофы  и гетеротрофы.

Автотрофы (от греческих слов autos — сам и trophe — пища) — живые организмы, синтезирующие органические соединения из неорганических. Автотрофы составляют первый ярус в пищевой пирамиде (первые звенья пищевых цепей). Именно они являются первичными продуцентами органического вещества в биосфере, обеспечивая пищей гетеротрофов. Следует отметить, что иногда резкой границы между автотрофами и гетеротрофами провести не удается. Например, одноклеточная эвглена на свету является автотрофом, а в темноте — гетеротрофом. Автотрофы делятся на фототрофов и хемотрофов.

Фототрофы - организмы, для которых источником энергии служит солнечный свет, называются фототрофами. Такой тип питания носит название фотосинтеза.

Хемотрофы - остальные организмы в качестве внешнего источника энергии используют энергию химических связей пищи или восстановленных неорганических соединений — таких, как сероводород, метан, сера, двухвалентное железо и др. Такие организмы называются хемотрофы. Все фототрофы-эукариоты одновременно являются автотрофами, а все хемотрофы-эукариоты — гетеротрофами. Среди прокариот встречаются и другие комбинации. Так, существуют хемоавтотрофные бактерии, а некоторые фототрофные бактерии являются гетеротрофами.

Гетеротрофы — организмы, которые не способны синтезировать органические вещества из неорганических. Для синтеза необходимых для своей жизнедеятельности органических веществ им требуются органические вещества, произведённые другими организмами. В процессе пищеварения пищеварительные ферменты расщепляют полимеры органических веществ на мономеры. В сообществах гетеротрофы — это консументы различных порядков и редуценты.

Миксотрофы - некоторые организмы (например, хищные растения) сочетают в себе признаки как автотрофов, так и гетеротрофов. Такие организмы называются миксотрофами. Некоторые источники считают термин "миксотрофии" неверным, так как та же Венерина мухоловка ловит мух для получения азота, а пищу получает с помощью фотосинтеза.

Литотрофы и органотрофы - эта классификация основана на делении организмов по донорам (источникам) электронов, необходимых для многих клеточных процессов. Литотрофы — организмы, для которых донорами электронов являются неорганические вещества. Органотрофы — организмы, для которых источниками электронов являются органические соединения.

Информация о работе Лекции по "Ботанике"