Автор работы: Пользователь скрыл имя, 01 Мая 2015 в 19:40, курс лекций
Работа содержит курс лекций по дисциплине "Биология".
5. Пренатальная диагностика:
Непрямые методы – обследование беременной женщины. Используются различные методы – генеалогический, цитогенетический, биохимический, иммунологический, серологический, бактериологический, молекулярно-биологический. При использовании непрямых методов о состоянии плода судят по биохимическим изменениям в крови и моче беременной женщины, а также по результатам других предусмотренных в таких случаях методах.
Прямые методы – непосредственное исследование состояния плода. Это:
А. Неинвазивные (прямые) методы – это методы обследования плода без оперативного вмешательства. УЗИ диагностика проводится на разных сроках беременности (10-13, 20-22, 30-32). Этот метод позволяет выявлять грубые пороки развития (дефекты рук, ног, головы, сердца). Для установления нарушения развития ССС применяют электрокардиографию плода.
Б. Инвазивные методы, когда диагностика проводится на материале плода, полученном одним из известных оперативных способов.
Выделяют следующие варианты инвазивного метода:
Биопсия хориона применяется для диагностики хромосомных болезней.
В настоящее время все чаще используют маркерные эмбриональные белки
Они находятся в сыворотке крови матери и только в эмбриональный период. Это альфафетопротеин (АФП) и хорионический гонадотропин (ХГТ).
АФП (α–фетопротеин) – этот белок вырабатывается печенью плода на 16-18 неделе. Если возникают врожденные дефекты нервной трубки, почек, брюшной стенки, то концентрация АФП в сыворотке крови беременных существенно выше нормы. А в крови женщины, вынашивающей дауника, концентрация АФП снижена.
ХГЧ (хорионический гонадотропин человека) образуется в ткани хориона сразу после имплантации эмбриона в стенку матки. Концентрация ХГЧ достигает максимума на 8-10 неделе беременности, а потом снижается. В то же время у 68% женщин, вынашивающих плод с хромосомной болезнью, этот показатель остается повышенным до рождения ребенка.
В крови женщины, вынашивающей дауника, уровень хорионического гонадотропина повышен.
ЛЕКЦИЯ 13 Индивидуальное развитие. Эмбриогенез.
Все организмы имеют определенный жизненный цикл. Для организмов развивающихся половым путем он начинается с момента появления зиготы и заканчивается естественной гибелью организма.
Совокупность процессов, которые происходят в течение жизненного цикла организмов, определяют как индивидуальное развитие или онтогенез.
Онтогенез включает 3 периода:
1 период. Предэмбриональный или гаметогенез.
2 период. Эмбриональный.
3 период. Постэмбриональный.
Развитие организмов бывает прямое и непрямое с превращением.
Непрямое развитие происходит через личиночную стадию. У личинки формируются определенные зародышевые или провизорные органы, которые обеспечивают жизнедеятельность организма на данной стадии развития.
У высших позвоночных развитие прямое, но во время эмбрионального развития также формируются провизорные органы. У млекопитающих это зародышевые оболочки (амнион, хорион, аллантоис, плацента) и желточный мешок.
Предэмбриональный период или гаметогенез включает несколько стадий: обособления, размножения, роста, созревания, формирования (последнее только у сперматозоидов).
Во время овогенеза происходят важнейшие события, которые необходимы для развития будущего организма.
1 событие. При овогенезе происходит амплификация генов рРНК или увеличение числа копий генов отвечающих за рРНК. Этот процесс происходит в профазу мейоза 1. Копий генов рРНК может быть до миллиона.
Затем эти копии отделяются от хромосом, свободно плавают в кариоплазме, вокруг них образуются ядрышки, а в ядрышках синтезируются субъединицы рибосом, которые поступают в цитоплазму. Таким образом, в яйцеклетке заранее резко увеличивается количество рибосом.
2 событие. При овогенезе в профазу мейоза 1 синтезируются различные виды иРНК. Процессы транскрипции идут на деспирализованных участках хромосом. Хромосомы на стадии профазы мейоза 1 называют – хромосомы типа ламповых щеток.
3 событие. В яйцеклетке накапливаются питательные вещества в виде желтка.
4 событие. Для яйцеклетки характерна ооплазматическая сегрегация, то есть распределение веществ по цитоплазме яйцеклетки, что приводит к химической неоднородности цитоплазмы. Предполагают, что это необходимо для ранней дифференцировки клеток.
5 событие. Половые клетки это особые клетки организма, так как они обладают тотипотентностью, то есть равнонаследственностью. Только половые клетки, а также бластомеры у человека, на стадии 2х бластомеров дают начало всем типам клеток. Например, опыты по разделению, сращиванию или перемешиванию бластомеров на стадии дробления показали, что у видов с радиальным типом дробления бластомеры нескольких поколений, если их изолировать и поместить в подходящие условия, проявляют тотипотентность, т.е. развиваются в полноценный организм. За равнонаследственность и тотипотентность клеток зародышей человека до стадии 2-4 бластомеров говорят случаи рождения двух, трех, четырех однояйцевых близнецов.
Эмбриональный период онтогенеза включает несколько стадий:
1. Стадия оплодотворения. 2. Стадия зиготы. 3 Стадия дробления (образование 1слойного зародыша)
4 Стадия гаструляции (образование двух-, и трехслойного зародыша).
5 Стадия гисто - и органогенеза (образования тканей и органов).
Оплодотворение – это процесс слияния яйцеклетки и сперматозоида, с образованием диплоидной зиготы, из которой развивается диплоидный организм. В этом процессе условно выделяют 3 стадии:
1 стадия – сближения гамет. В этом важную роль играют вещества, которые выделяются яйцеклеткой и сперматозоидом. Они называются – гамоны (гормоны гамет, соответственно гиногамоны и андрогамоны). Кроме того, выделяют ряд неспецифических факторов, повышающих вероятность встречи и взаимодействия сперматозоида с яйцеклеткой. К ним относятся
У млекопитающих большое значение имеет пребывание сперматозоидов в половых путях самки, в результате чего мужские половые клетки приобретают оплодотворяющую способность, т.е. способность к акросомальной реакции.
2 стадия – активации гамет, наступает после их контакта. Активация сперматозоида называется акросомная реакция. Активация яйцеклетки – кортикальная реакция.
Суть акросомной реакции: У сперматозоида в области акросомы изменяется проницаемость плазматической мембраны, и из акросомы выделяются ферменты – сперматолизины. Эти ферменты расслабляют связи между фолликулярными клетками, которые окружают яйцеклетку. Сперматозоид проходит через слой фолликулярных клеток, затем разрушается зона пеллюцида и сперматозоид проходит через эту зону.
Суть кортикальной реакции: Заключается в сложных структурных и физико-химических изменениях. Благодаря тому, что участок мембраны сперматозоида проницаем для ионов натрия, последние начинают поступать внутрь яйца, изменяя мембранный потенциал клетки. Затем в виде волны, распространяющейся из точки соприкосновения гамет, происходит увеличение содержания ионов Са2+ (в гиалоплазме они выходят из депо – ЭПС, ретикулум) и в яйцеклетке запускаются биохимические процессы, вслед за чем, также волной растворяются кортикальные гранулы. Выделяемые при этом специфические ферменты способствуют отслойке желточной оболочки; она затвердевает, это оболочка оплодотворения.
Одним из значений кортикальной реакции является предотвращение полиспермии, т.е. проникновения в яйцеклетку более одного сперматозоида. У млекопитающих кортикальная реакция не вызывает образования оболочки оплодотворения, но суть ее та же.
Активация яйцеклетки завершается началом синтеза белка на трансляционном уровне, поскольку мРНК, тРНК, рибосомы и энергия были запасены еще в овогенезе.
3 стадия – слияния гамет, или сингамия. При этом образуется общая плазматическая мембрана у сперматозоида и яйцеклетки. Женский и мужской пронуклеус сближаются и сливаются (синкарион), образуя общую метафазную пластинку. Это и есть момент окончательного слияния гамет – сингамия.
Особенности оплодотворения у различных видов организмов.
1 пример. У млекопитающих и человека
сперматозоид связывается с яйц
2 пример. У морского ежа после оплодотворения в яйцеклетке резко изменяется электрический потенциал плазматической мембраны, а затем образуется оболочка оплодотворения, препятствующая полиспермии.
Стадия зиготы. После проникновения мужское ядро называется – мужской пронуклеус. В нем разрыхляется хроматин, происходит репликация ДНК. Женское ядро называется – женский пронуклеус. В нем происходят те же события. У млекопитающих и человека слияния ядер не происходит, а сразу образуется метафазная пластинка.
Искусственное оплодотворение яйцеклетки животных имеет важное научное значение для медицины, так как в процессе его изучения разрабатываются пути и механизмы лечения бесплодия у людей.
Искусственное оплодотворение применяется при различных формах бесплодия как мужского, так и женского, которое с трудом поддается лечению. Например, когда у мужчины сперматозоидов слишком мало или они практически неподвижны, когда у женщины нарушена проходимость маточных труб или имеются какие-нибудь другие повреждения внутренних половых органов, при иммунологической несовместимости партнеров.
Стадия дробления. Это стадия образования однослойного зародыша - бластулы. Внутри бластулы находится полость – бластоцель.
Особенности дробления:
Тип дробления зависит от типа яйцеклетки.
дробление | |
голобластическое (полное) |
меробластическое (неполное) |
полное равномерное дробление (ланцетник) |
неполное дискоидальное дробление (птицы) |
полное неравномерное дробление (амфибии) |
поверхностное дробление (насекомые) |
Полное равномерное дробление у ланцетника:
Первая борозда дробления проходит вертикально, образуется два бластомера. Вторая борозда также идет вертикально и образуется четыре бластомера. Третья борозда проходит горизонтально, образуется восемь бластомеров, а затем вертикальные и горизонтальные борозды чередуются. Спустя 12 циклов дробление становится асинхронным. На определенной стадии развития зародыш представляет собой комочек клеток или морула. Затем между клетками появляются промежутки, и образуется полость – бластоцель. У ланцетника в ходе дробления образуется бластула, которая называется целобластула, то есть однослойный шар.