Автор работы: Пользователь скрыл имя, 01 Мая 2015 в 19:40, курс лекций
Работа содержит курс лекций по дисциплине "Биология".
Генные мутации или точковые мутации – это мутации, которые возникают в генах на уровне нуклеотидов, при этом изменяется структура гена, изменяется молекула мРНК, изменяется последовательность аминокислот в белке, в организме изменяется признак.
Виды генных мутаций:
Пример: замена глутаминовой кислоты на валин в молекуле гемоглобина.
ЦТТ – глутаминовая кислота, ЦАТ – валин
Если такая мутация происходит в гене, который кодирует β цепь белка гемоглобина, то в β цепь вместо глютаминовой кислоты включается валин → в результате такой мутации изменяются свойства и функции белка гемоглобина и вместо нормального HbA появляется HbS, в результате у человека развивается серповидноклеточная анемия (форма эритроцитов изменяется).
Если в результате генной мутации у организма будет появляться новый признак (например, полидактилия), то они называются неоморфные.
если в результате генной мутации организм утрачивает признак (например, при ФКУ исчезает фермент) то они называются аморфные.
Механизмы возникновения генных мутаций (замена, вставка, выпадение).
ДНК состоит из 2-х полинуклеотидных цепей. Сначала изменение возникает в 1-й цепи ДНК – это полумутационное состояние или “первичное повреждение ДНК”. Каждую секунду в клетке имеет место 1 первичное повреждение ДНК.
Когда повреждение переходит на вторую цепь ДНК то, говорят о том, что произошла фиксация мутации, то есть возникла “полная мутация”.
Первичные повреждения ДНК возникают при нарушении механизмов репликации, транскрипции, кроссинговера
У человека частота мутаций = 1х10–4 – 1х10–7, то есть в среднем 20–30% гамет у человека в каждом поколении являются мутантными.
У дрозофилы частота мутаций = 1х10–5, то есть 1 гамета из 100 тысяч несет генную мутацию.
Генные мутации встречаются у всех организмов, гены мутируют в различных направлениях, а также с различной частотой. Гены, которые редко мутируют называются – стабильные, а гены, которые часто мутируют называются – мутабельные.
Мутирование происходит в самых различных направлениях, т.е. случайно. Однако эти случайности подчиняются закономерности, обнаруженной в 1920г. Вавиловым. Он сформулировал закон гомологичных рядов в наследственной изменчивости.
"Виды и роды генетически близкие характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть существование параллельных форм у других видов и родов".
Этот закон позволяет предсказать наличие определённого признака у особей различных родов одного семейства. Так было предсказано наличие в природе безалкалоидного люпина, т.к. в семействе бобовых есть роды бобов, гороха, фасоли, не содержащие алкалоиды.
В медицине закон Вавилова позволяет использовать животных, генетически близких человеку, в качестве генетических моделей. На них ставят эксперименты по изучению генетических болезней. Например, катаракта изучается на мышах и собаках; гемофилия – на собаках, врождённая глухота – на мышах, морских свинках, собаках.
Закон Вавилова позволяет предвидеть появление индуцированных мутаций, неизвестных науке, которые могут использоваться в селекции для создания ценных для человека форм растений.
Репарация ДНК – удаление первичных повреждений из ДНК и замена их нормальными структурами.
Выделяют две формы репарации: световую и темновую
А. Световая репарация (или ферментативная фотореактивация). Ферменты репарации активны только в присутствии света. Эта форма репарации направлена на удаление первичных повреждений ДНК вызванных действием УФЛ.
Под действием УФЛ в ДНК активируются пиримидиновые азотистые основания, что приводит к тому, что возникают связи между пиримидиновыми азотистыми основаниями, которые располагаются рядом в одной цепи ДНК, то есть образуются пиримидиновые димеры. Чаще всего возникают связи: Т=Т; Т=Ц; Ц=Ц.
В норме в ДНК пиримидиновых димеров нет. Образование их приводит к тому, что искажается наследственная информация и нарушается нормальный ход репликации и транскрипции, что приводит впоследствии к генным мутациям.
Суть фотореактивации: в ядре существуют специальный (фотореактивирующий) фермент, который активен только в присутствии света, этот фермент разрушает пиримидиновые димеры, то есть разрывает связи, которые возникли между пиримидиновыми азотистыми основаниями под действием УФЛ.
Темновая репарация происходит в темноте и на свету, то есть активность ферментов не зависит от присутствия света. Она делится на дорепликативная репарацию и пострепликативную репарацию.
Дорепликативная репарация происходит до репликации ДНК, в этом процессе участвует много ферментов:
Допустим, в ДНК имеется первичное повреждение.
1 этап. Фермент эндонуклеаза находит поврежденный участок и разрезает его.
2 этап. Фермент экзонуклеаза удаляет поврежденный участок из ДНК (эксцизия) в результате образуется брешь.
3 этап. Фермент ДНК полимераза синтезирует недостающий участок. Синтез происходит по принципу комплементарности.
4 этап. Ферменты лигазы соединяют или сшивают вновь синтезированный участок с цепью ДНК. Таким образом, первичное повреждение в ДНК устраняется.
Пострепликативная репарация.
Допустим, в ДНК имеется первичное повреждение.
1 этап. Начинается процесс репликации ДНК. Фермент ДНК-полимераза синтезирует новую цепь полностью комплементарную старой неповрежденной цепи.
2 этап. Фермент ДНК полимераза синтезирует другую новую цепь, но участок, где находится повреждение, он обходит. В результате во второй новой цепи ДНК образовалась брешь.
3 этап. По окончании репликации фермент ДНК полимераза синтезирует недостающий участок комплементарно новой цепи ДНК.
4 этап. Затем фермент лигаза
В дальнейшем первичное повреждение ДНК может быть ликвидировано в ходе дорепликативной репарации.
Способность к репарации у организмов выработалась и закрепилась в ходе эволюции. Чем выше активность репарирующих ферментов, тем стабильнее наследственный материал. За ферменты репарации отвечают соответствующие гены, поэтому если происходит мутация в этих генах, то снижается активность репарирующих ферментов. У человека при этом возникают тяжелые наследственные заболевания, которые связаны со снижением активности репарирующих ферментов.
Таких заболеваний у человека больше 100. Некоторые из них:
Анемия Фанкони – уменьшение количества эритроцитов, потеря слуха, нарушения в ССС, деформация пальцев, микроцефалия.
Сидром Блума – малый вес новорождённого, замедление роста, повышенная восприимчивость в вирусной инфекции, повышенный риск онкологических заболеваний. Характерный признак: при непродолжительном пребывании на солнечном свету на коже лица появляется пигментация в форме бабочки (расширение кровеносных капилляров).
Пигментная ксеродермия – на коже от света появляются ожоги, которые скоро перерождаются в рак кожи (у таких больных рак возникает в 20.000 раз чаще). Больные вынуждены жить при искусственном освещении.
Частота заболевания – 1 : 250.000 (Европа, США), и 1 : 40.000 (Япония)
Два вида прогерий – преждевременное старение организма.
Генные болезни (или молекулярные болезни) достаточно широко представлены у человека, их насчитывается более 1000.
Особую группу среди них составляют врожденные дефекты обмена веществ. Впервые эти заболевания описал А. Гарод в 1902 году. Симптоматика этих заболеваний различна, но всегда имеет место нарушение превращения веществ в организме. При этом одни вещества будут в избытке, другие в недостатке. Например, в организм поступает вещество (А) и превращается далее под действием ферментов в вещество (В). Далее вещество (В) должно превращаться в вещество (С), но этому мешает мутационный блок
( ), в результате вещество (С) будет в недостатке, а вещество (В) в избытке.
А → В С
Примеры некоторых болезней, обусловленных врожденным дефектом обмена веществ.
ФКУ (фенилкетонурия, врожденное слабоумие). Генное заболевание, наследуется по аутосомно-рецессивному типу, встречается с частотой = 1:10.000. Фенилаланин является незаменимой аминокислотой для построения белковой молекулы и, кроме того, служит предшественником гормонов щитовидной железы (тироксина), адреналина и меланина. Аминокислота фенилаланин в клетках печени должна превращаться с помощью фермента (фенилаланин-4-гидроксилазы) в тирозин. Если отсутствует фермент, отвечающий за данное превращение, или снижена его активность то содержание фенилаланина в крови будет резко повышено, а содержание тирозина понижено. Избыток фенилаланина в крови приводит к появлению его производных (фенилуксусной, фенилмолочной, фенилпировиноградной и других кетоновых кислот), которые выделяются с мочой, а также оказывают токсическое воздействие на клетки центральной нервной системы, что приводит к слабоумию.
При своевременной постановке диагноза и переводе младенца на диету, лишенную фенилаланина, развитие заболевания можно предупредить.
Альбинизм общий. Генное заболевание, наследуется по аутосомно-рецессивному типу. В норме аминокислота тирозин участвует в синтезе тканевых пигментов. Если возникает мутационный блок, отсутствует фермент или снижена его активность, то тканевые пигменты не синтезируются. В этих случаях кожа имеет молочно-белый цвет, волосы очень светлые, вследствие отсутствия пигмента в сетчатке просвечивают кровеносные сосуды, глаза имеют красновато-розовый цвет, и повышенную чувствительность к свету.
Алькапнонурия. Генное заболевание, наследуется по аутосомно-рецессивному типу, встречается с частотой = 3-5:1.000.000. Заболевание связано с нарушением превращения гомогентизиновой кислоты, в результате чего эта кислота накапливается в организме. Выделяясь с мочой, эта кислота приводит к развитию заболеваний почек, кроме того, подщелоченная моча при этой аномалии быстро темнеет. Также заболевание проявляется окрашиванием хрящевых тканей, в пожилом возрасте развивается артрит. Таким образом, заболевание сопровождается поражением почек и суставов.
Генные болезни, связанные с нарушением обмена углеводов.
Галактоземия. Генное заболевание, наследуется по аутосомно-рецессивному типу, встречается с частотой = 1:35.000-40.000 детей.
В крови новорождённого содержится моносахарид галактоза, который образуется при расщеплении дисахарида молока лактозы на глюкозу и галактозу. Галактоза непосредственно не усваивается организмом, она должна быть переведена специальным ферментом в усваиваемую форму – глюкоза-1-фосфат.