Автор работы: Пользователь скрыл имя, 30 Января 2014 в 15:14, курс лекций
Современная коллоидная химия играет огромную роль во всей материальной культуре человечества, поскольку материальная основа современной цивилизации и самого существования человека связаны с коллоидными системами.
Учение о растворах является одним из основных в современной химии и при изучении химии растворам уделяется большое внимание. Между тем, молекулярные и ионные растворы встречаются в природе и технике реже, чем коллоидные растворы.
Квинке в 1859 году обнаружил, что при течении жидкости через пористое тело под влиянием перепада давлений возникает разность потенциалов. Это явление, обратное электроосмосу, названо потенциалом протекания или потенциалом течения. Возникновение разности потенциалов Квинке наблюдал при течении воды и водных растворов через разные пористые материалы (глина, песок, дерево, графит).
Таким образом, по причинно-следственным признакам электрокинетические явления делят на две группы.
К первой относят явления, при которых относительное движение фаз вызывается электрической разностью потенциалов – электрофорез и электроосмос.
Ко второй группе явлений относят потенциал течения и потенциал седиментации в которых электрическая разность потенциалов обусловливается относительным движением фаз.
Лекция 5. Устойчивость и коагуляция коллоидных систем
Понятие об устойчивости дисперсных систем.
Виды устойчивости ДС.
Коагуляция.
Действие электролитов на коагуляцию.
Совместное действие электролитов при коагуляции.
Теория устойчивости ДЛФО.
Скорость коагуляции.
Старение золей. Коллоидная защита.
Вопросы устойчивости дисперсных систем занимают центральное место в коллоидной химии, поскольку эти системы в основном термодинамически неустойчивы.
Под устойчивостью системы понимают постоянство во времени ее состояния и основных свойств: дисперсность равномерного распределения частиц дисперсной фазы в объеме дисперсионной среды и характера взаимодействия между частицами.
Частицы дисперсной системы, с одной стороны, испытывают действие земного притяжения; с другой стороны, они подвержены диффузии, стремящейся выровнять концентрацию во всех точках системы. Когда между этими двумя силами наступает равновесие, частицы дисперсной фазы определенным образом располагаются относительно поверхности Земли.
По предложению Н.П. Пескова (1920г) устойчивость дисперсных систем подразделяют на два вида:
(условия устойчивости –
Дисперсные системы по устойчивости делят на два класса:
Первые самопроизвольно
Свободная энергия Гиббса термодинамически устойчивой системы уменьшается (DG<0).
К термодинамически неустойчивым системам относятся золи, суспензии, эмульсии (DG>0).
В последнее время
различают также конденсационну
Лиофобные коллоиды являются термодинамически неустойчивыми системами, существующими благодаря стабилизации за счет возникновения защитных ионных или молекулярных слоев. Следовательно, изменение состояния этих слоев может привести к потере устойчивости и затем к выделению дисперсной фазы.
Коагуляция - процесс слипания (слияния) коллоидных частиц с образованием более крупных агрегатов с последующей потерей кинетической устойчивости.
В общем смысле под коагуляцией понимают потерю агрегативной устойчивости дисперсной системы.
Скрытая стадия коагуляции – очень быстрая – размер частиц увеличивается, но осадок не выпадает – изменение окраски, помутнение.
Явная стадия – выпадение осадка, выделение двух фаз в растворе. Осадок называется коагулят.
Конечным итогом коагуляции могут быть два результата: разделение фаз и образование объемной структуры, в которой равномерно распределена дисперсионная среда (концентрирование системы). В соответствии с двумя разными результатами коагуляции различают и методы их исследования (для первого результата – оптические, например, для второго – реологические).
Основные процессы, которые могут происходить в дисперсных системах, показаны на рис. 5.1.
Из схемы видно, что понятие коагуляция включает в себя несколько процессов (флокуляция, коалесценция, агрегация, структурообразование), идущих с уменьшением удельной поверхности системы.
Рис. 5.1. Процессы, происходящие в дисперсных
системах.
Коагуляция может быть вызвана разными факторами:
Наиболее важным и изученным является действие электролитов.
Установлен ряд эмпирических закономерностей воздействия электролитов, которые известны под названием правил коагуляции:
Порог коагуляции – минимальная концентрация электролита, вызывающая коагуляцию (g, моль/л; иногда Ск ).
Порог коагуляции определяют по помутнению, изменению окраски или по началу выделения дисперсной фазы в осадок.
Коагулирующим действием обладает тот ион электролита, который имеет заряд, противоположный заряду потенциалопределяющих ионов мицеллы (гранулы), причем, коагулирующее действие тем сильнее, чем выше заряд.
где К – коагулирующая способность (примем ее за единицу).
По правилу Шульца – Гарди значение порогов коагуляции для противоионов с зарядами 1, 2 и 3 соотносятся как 1:1/20:1/500, т.е. чем выше заряд, тем меньше требуется электролита, чтобы вызвать коагуляцию.
Например, коагулируем золь сульфида мышьяка (As2S3): или Fe(OH)2
(As2S3)
NaCl (Na+) g=5 моль/л KBr (Br-) g=12,5
MgCl2 (Mg2+) g=0,72 K2SO4 (SO42-) g=0,205
AlCl3 (Al3+) g=0,092
Правило Шульце – Гарди имеет приближенный характер и описывает действие ионов лишь неорганических соединений.
Лиотропные ряды или ряды Гофмейстера – это порядок расположения ионов по их способности гидратироваться (связывать воду).
Слово ''лиотропный'' значит ''стремящийся к жидкости'' (более подходящий термин для случая водных сред – гидротропный).
возрастание коагулирующей активности
Li+; Na+; K+; Rb+; Cs+
возрастание степени гидратации
Теплота гидратации: 140 117 93 86 (ккал/г-ион)
5. Очень часто началу коагуляции соответствует снижение дзета-потенциала до критического значения (около 0,03 В).
6. В осадках, получаемых при коагуляции электролитами, всегда присутствуют ионы, вызывающие ее.
Смеси электролитов при коагуляции золей редко действует независимо. Наблюдаемые при этом явления можно свести к трем следующим: аддитивность, антагонизм и синергизм электролитов. Указанные явления при использовании смесей электролитов приведены на рис.5.2.
Зависимость 1 – характеризует аддитивное действие электролитов. Коагулирующее действие в смеси определяют по правилу простого сложения:
KCl+KNO3; NaCl+KCl
Кривая 2 – антагонизм электролитов – содержание каждого электролита в смеси превышает его собственную пороговую концентрацию
Al(NO3)3+K2SO4; Ti(NO3)4+Na2SO4
Синергизм действия электролитов демонстрирует кривая 3. Усиливается действие каждого из электролитов – для коагуляции их требуется меньше в смеси, чем каждого по отдельности.
LiCl+CaCl2 действуют на гидрозоль H2S
Рис. 5.2. Совместное действие электролитов при
коагуляции.
Современная физическая теория коагуляции электролитами основана на общих принципах статистической физики, теории молекулярных сил и теории растворов. Ее авторами являются: Б.В. Дерягин, Л.Д. Ландау (1937-1941), Э. Фервей, Я. Овербек (по первым буквам ДЛФО).
Суть теории: между любыми частицами при их сближении возникает расклинивающее давление разделяющей жидкой прослойки в результате действия сил притяжения и отталкивания. Расклинивающее давление является суммарным параметром, учитывающим действие как сил притяжения, так и сил отталкивания.
Состояние системы зависит от баланса энергии притяжения (Uпр) и энергии отталкивания (Uотт). Преобладает Uотт – устойчивая система. Преобладает Uпр - нарушение агрегативной устойчивости – коагуляция.
Изменение энергии взаимодействия между двумя частицами при их сближении изображают графически (рис. 5.3).
Суммарную энергию системы из двух частиц (кривая 3) получают сложением Uотт и Uпр:
U=Uотт+Uпр =
где: В – множитель, зависящий от значений электрических потенциалов ДЭС, свойств среды, температуры;
е – основание натурального логарифма;
c – величина, обратная толщине диффузного слоя;
h – расстояние между частицами;
А – константа молекулярных сил притяжения.
Рис.5.3. Потенциальные кривые взаимодействия
коллоидных частиц:
1 – изменение энергии отталкивания с расстоянием;
2 – изменение энергии притяжения;
3 – результирующая кривая.
Рассмотрим результирующую кривую 3 на рис.5.3. На ней имеются характерные участки:
Результирующая кривая 3 может иметь различный вид в зависимости от устойчивости дисперсной системы (рис.5.4.).
Рис. 5.4. Потенциальные кривые для определенных
состояний устойчивости дисперсной системы: