Автор работы: Пользователь скрыл имя, 30 Января 2014 в 15:14, курс лекций
Современная коллоидная химия играет огромную роль во всей материальной культуре человечества, поскольку материальная основа современной цивилизации и самого существования человека связаны с коллоидными системами.
Учение о растворах является одним из основных в современной химии и при изучении химии растворам уделяется большое внимание. Между тем, молекулярные и ионные растворы встречаются в природе и технике реже, чем коллоидные растворы.
Этим же способом можно получить из нитратов серебра (очень разбавленного раствора) желто-коричневый золь серебра.
Окисление: получают золи серы и селена действием кислорода:
строение золя серы можно представить схемой:
Разложение: получение золи серы разложением тиосульфатов и полисульфатов:
Двойной обмен: позволяет получать многие золи труднорастворимых соединений:
Гидролиз: получают золи гидроксидов тяжелых металлов:
Степень гидролиза возрастает с повышением температуры и с увеличением разведения.
Возможны следующие схемы
С помощью гидролиза могут быть получены золи кремниевой, вольфрамовой, титановой и других кислот, нерастворимых в воде.
Методы диспергирования.
Диспергирование – тонкое измельчение твердых материалов или жидкостей и распределение их частиц в жидкой или газообразной среде.
В результате образуются порошки, суспензии, аэрозоли, эмульсии.
Механическое диспергирование.
Для получения коллоидных растворов этим методом производится растирание и дробление твердых тел в специальных машинах – коллоидных мельницах.
Первая коллоидная мельница сконструирована русским инженером К. Плауссоном (1920г.) – герметически закрытый, быстро вращающийся механизм ударного действия.
В основу действия машин-измельчителей положены принципы раздавливания, раскалывания, истирания, удара и т.д. – процесс ведут обычно в присутствии ПАВ.
Метод электрического распыления: через какую-либо дисперсионную среду (например, воду) пропускают электрический ток между электродами, изготовленными из материала, коллоидный раствор которого хотят получить – один электрод распыляется. Получают коллоидные растворы золота, серебра, платины и других металлов.
Ультразвуковое распыление: ультразвуковые волны с частотой от 20 тысяч до 1 млн. колебаний в секунду получают с помощью пьезоэлектрических осцилляторов.
Взвесь грубодисперсного вещества, подлежащего раздроблению, под действием ультразвуковых волн размельчается до коллоидного состояния.
Таким образом получают коллоидные растворы смол, гипса, графита, металлов, красителей, крахмала и т.д.
Хотя методы диспергирования все более совершенствуются, тем не менее для получения максимальной дисперсности 10-7, 10-9 м пригодны только методы конденсации (они к тому же менее энергоемкие).
В тоже время, диспергационные методы имеют более важное практическое значение.
Электрогидравлический удар – новый способ получения дисперсных систем, обеспечивающий высокую степень дисперсности при минимальных затратах времени.
Электрогидравлические технологии – результат фундаментальных и прикладных исследований, опытно-конструкторских разработок и опытно-промышленных проверок оборудования, проводимых Институтом импульсных процессов и технологий НАН Украины (г. Николаев). ИИПТ НАН Украины – единственная в мире организация, специализирующаяся на изучении физико-технических аспектов импульсных процессов и на создании импульсных технологий.
Метод пептизации.
Перевод осадка в золь путем обработки пептизаторами – растворами электролитов, ПАВ или растворителем. При пептизации не происходит изменения степени дисперсности частиц.
Результатом пептизации является разобщение частиц и распределение их по всему объему дисперсионной среды.
Различают два вида пептизации:
непосредственная или адсорбционная: на поверхности частиц перед их разделением адсорбируется непосредственно добавленный пептизатор. Характеризуется полным отсутствием каких-либо химических процессов между пепетизируемым веществом и пептизатором. |
посредственная или диссолюционная: охватывает все случаи, когда пептизация сопряжена с химической реакцией поверхностно расположенных молекул коллоидных частиц. На поверхности частиц адсорбируется продукт взаимодействия пептизатора с веществом дисперсной фазы (ионы вновь полученного пептизатора). Таким образом, процесс диссолюционной пептизации состоит из 2-х фаз: 1 – образование путем химической реакции растворимого электролита-пептизатора; 2 – адсорбционное взаимодействие коагеля с пептизатором, приводящее к образованию мицелл и пептизации геля. |
Рассмотрим на примере: получим студенистый осадок гидроксида железа:
Непосредственная пептизация: действуем раствором . Ионы железа, адсорбируясь на поверхности частиц, сообщают им положительный заряд, одноименно заряженные частицы отталкиваются и переходят из осадка в раствор:
Посредственная пептизация: действуем разбавленной соляной кислотой. Часть молекул взаимодействует с с образованием хлороксида железа . Ионы вновь полученного пептизатора , адсорбируясь на поверхности частиц осадка , переводят его в коллоидное состояние:
Во многих случаях процесс пептизации имеет смешанный характер.
На пептизацию влияют: структура осадка, возраст осадка (коагеля), концентрация пептизатора, механическое воздействие, температура.
Свежеосажденные, сильно гидратированные осадки наиболее легко пептизируются. Процессы старения коагеля отрицательно влияют на его пептизируемость (по мере старения коагель уплотняется). У старых осадков способность к пептизации часто исчезает вовсе. Перемешивание благоприятствует пептизации. С повышением температуры скорость пептизации возрастает.
Очистка коллоидных растворов.
Коллоидные растворы, полученные любыми методами, обычно содержат ряд примесей (исходные вещества или побочные продукты). Все эти вещества изменяют свойства коллоидных систем и поэтому должны быть удалены.
Диализ: процесс очистки (отделения) коллоидных растворов основан на свойстве полупроницаемой мембраны пропускать примеси ионов и молекул малых размеров и задерживать коллоидные частицы.
Прибор для очистки коллоидов называется диализатором.
Рис. 2.8. Схема диализатора:
3 – мембрана.
Непрерывно или периодически меняя растворитель в диализаторе, добиваются полной очистки коллоидного раствора.
Недостаток простого диализатора – большая длительность процесса очистки (иногда недели, месяцы).
Электродиализ: процесс диализа, ускоренный путем применения электрического тока (в растворитель вводятся электроды 4).
Рис. 2.9. Схема электродиализатора.
Под действием электрического поля происходит перенос катионов из средней камеры в катодную камеру, анионов – в анодную. Удаляются даже следы электролитов, что обыкновенным диализом не достигается.
Время очистки значительно сокращается (часы, минуты).
Электродиализ находит промышленное применение: этим методом удаляют соли из молочной сыворотки. Очищенная от солей сыворотка содержит большое количество лактозы и белков и используется для получения продуктов диетического питания.
Ультрафильтрация: фильтрование коллоидных растворов через полупроницаемую мембрану под давлением или в вакууме. При этом коллоидные частицы остаются на фильтре (мембране), а фильтрат, содержащий низкомолекулярные вещества, переходит в растворитель.
Для ускорения ультрафильтрацию проводят под давлением (иногда в вакууме).
Мембраны - особые полимерные пленки, размер пор которых 10-5-10-6 см.
Способ ультрафильтрации используется для концентрирования золей путем отделения дисперсной фазы от дисперсионной среды и содержащихся в ней низкомолекулярных веществ.
Электроультрафильтрация: ультрафильтрация в электрическом поле.
В таблице приведены относительные скорости очистки коллоидных растворов:
Метод |
Относительные скорости удаляемого вещества | |
(соль) |
Сахар | |
Диализ Электродиализ Ультрафильтрация Электроультрафильтрация |
1 163 14 182 |
0,3 2 14 14 |
Лекция 3. Молекулярно-кинетические и
оптические свойства коллоидных систем.
Броуновское движение.
Диффузия.
Осмотическое давление коллоидных растворов.
Седиментация в дисперсных системах.
Оптические свойства дисперсных систем.
Явление рассеяния света.
Поглощение (адсорбция) света.
Броуновское движение.
Коллоидные частицы по молекулярно-кинетическим свойствам принципиально не отличаются от истинных растворов. Взвешенные в растворе частицы находятся постоянном беспорядочном тепловом движении (Броуновское движение – открыл в 1827 году английский ботаник Р.Броун, наблюдая как микроскопические частицы пыльцы и спор непрерывно и хаотично передвигаются в воде). При столкновении частиц происходит обмен количеством энергии и в результате устанавливается средняя кинетическая энергия, одинаковая для всех частиц. Молекулы (например, газа) движутся со скоростью сотни метров в секунду, коллоидные частицы размером 3-5 мкм - доли миллиметров в секунду, что обусловлено их гигантскими размерами.
Траектория движения частиц, зафиксированная с помощью кинематографической микросъемки имеет вид ломаной линии (рис. 3.1).
Рис. 3.1. Схема перемещения частицы при
броуновском движении.
Средняя квадратичная величина всех смещений без учета направления движения равна:
- число смещений (число отрезков ломаной линии);
- отдельные проекции смещения частицы на ось х.
Элементарные исследования броуновского движения проводились Р. Зигмонди, Ж. Перреном, Т. Сведбергом, а теория этого движения была развита Эйнштейном и Смолуховским (1905).
Уравнеие Эйнштейна-
- универсальная газовая
- абсолютная температура;
- вязкость среды;
- радиус взвешенных частиц;
- постоянная Авогадро;
- время.
Из уравнения следует вывод – чем крупнее частица, тем меньше величина ее смещения.
Кроме поступательного движения частицы обладают также и вращательным движением.
Для вращательного броуновского движения частиц сферической формы среднее квадратичное значение угла вращения (угла поворота) составит:
Теория Эйнштейна получила многочисленные и неоспоримые доказательства.
Например, блестящим подтверждением теории являлись работы Ж. Перрена, который в своих опытах использовал сферические частицы мастики с точно известным радиусом 1 мкм. Измеряя на этом золе поступательное и вращательное движение частиц при известных значениях Т и h Перрен вычислил постоянную Авогадро NA=6,5×1023.
Диффузия
Диффузия – самопроизвольный процесс выравнивания концентрации частиц по всему объему раствора или газа под влиянием теплового (или броуновского) движения.
Эйнштейн, изучая броуновское движение, установил связь коэффициента диффузии – D со средним сдвигом:
Эйнштейн показал, что коэффициент диффузии D связан с размерами диффундирующих частиц уравнением:
где – радиус сферических частиц, размер которых много больше, чем размер молекул растворителя.
Уравнение Эйнштейна для коэффициента диффузии является одним из основных в коллоидной химии: с его помощью можно вычислить размер частиц золей и молекулярную массу полимера. Для этого надо лишь экспериментально определить коэффициент диффузии. При этом измеряют скорость изменения концентрации в слоях раствора (концентрацию определяют чаще всего оптическими методами – показатель преломления, оптическая плотность раствора и др.).