Применение статистических методов при анализе интенсивности развития отрасли транспорт и оборудования

Автор работы: Пользователь скрыл имя, 31 Марта 2014 в 13:13, курсовая работа

Краткое описание

В данной курсовой работе представлен анализ развития отрасли производства транспортных средств и оборудования.
Для проведения анализа собраны следующие данные:
- основные показатели отрасли (число предприятий, объем промышленной продукции, численность промышленно-производственного персонала, прибыль и убытки, уровень рентабельности продукции, снижение затрат на 1 рубль товарной продукции);

Содержание

Введение…………………………………………………………………………..3
1. Исходные данные для анализа 5
2. Анализ основных показателей отрасли. 8
2.1 Анализ числа предприятий отрасли. 8
2.2 Анализ численности работающих и их структуры. 13
2.3 Динамика производства продукции. 15
2.4. Анализ финансовых показателей. 20
3. Выявление основной тенденции развития и прогнозирование. 24
4. Индексный анализ итоговых показателей работы отрасли. 28
Заключение 30
Список литературы. 31

Прикрепленные файлы: 1 файл

курсовая работа.doc

— 303.50 Кб (Скачать документ)

 

Все расчеты производим по следующим формулам:

 

IQ= Qn / Qn-1

где IQ – индекс выпуска продукции

          Qn – объем производства n-го года

 

Iцр = IQ,n / Iq,n

где Iцр – индекс цен расчетный (индекс Ласпейреса)     

       IQ,n – индекс выпуска продукции n-го года

       Iq,n – индекс промышленного производства n-го года

 

 Iф,n = √Iцп,n * Iцр,n

где Iф,n – индекс Фишера цепной n-го года

      Iцп,n – индекс цен производителей n-го года

      Iцр,n – индекс цен расчетный n-го года

 

Iфб,n = Iф,1 * Iф,2 * … * Iф,n

где Iфб,n – индекс Фишера базисный n-го года

 

Q в соп ценах, n = Qn / Iфб,n

где Q в соп ценах, n – выпуск продукции в сопоставимых ценах n-го года

           Qn – объем производства n-го года

        Iфб,n – индекс Фишера базисный n-го года

или

Q в соп ценах, n = Qn / Iф,n / Iф,n-1 / … / Iф,б

 где Q в соп ценах, n – выпуск продукции в сопоставимых ценах n-го года

           Qn – объем производства n-го года

        Iф,n – индекс Фишера n-го года

        Iф,б – индекс Фишера базисного года

 

Приведем пример расчета показателей для 2011 года:

IQ,2011 = 2340 / 1670 = 1,401

Iцр,2011 = 1,401 / 1,246 = 1,124

Iф,2011 = √1,095 * 1,124 = 1,109 

Iфб,2011 = 1,128 * 1,122 * 1,129 * 1,072 * 1,263 * 1,109 = 2,145

Q2011 в ценах 2005г = 2340 / 2,145 = 1090,9

Q2011 в ценах 2005г = 2340 / 1,109 / 1,263 / 1,072 / 1,129 / 1,122 / 1,128= 1090,9

 

Расчеты по другим годам рассчитываются аналогично. Все полученные в ходе расчетов результаты заносим в таблицу 11.

 

Таблица 11 – Показатели работы отрасли производства транспортных средств и оборудования.

 

Показатели

2005

2006

2007

2008

2009

2010

2011

1

2

3

4

5

6

7

8

Объем производства, млн. руб.

833

1024

1284

1513

1119

1670

2340

Индекс выпуска продукции (индекс стоимости)

-

1,229

1,254

1,178

0,740

1,492

1,401

Индекс промышленного производства, в разах

1,071

1,047

1,078

1,004

0,628

1,322

1,246

Индекс цен расчетный (индекс Ласпейреса)

-

1,174

1,163

1,173

1,178

1,129

1,124

Индекс цен производителей, в разах

1,232

1,084

1,083

1,087

0,975

1,119

1,095

Индекс Фишера цепной

-

1,128

1,122

1,129

1,072

1,263

1,109

Индекс Фишера базисный

-

1,128

1,266

1,429

1,532

1,935

2,145

Выпуск продукции в сопоставимых ценах, приведенных к 2005 году

-

907,8

1014,2

1058,8

730,4

863,0

1090,9


 

Для наглядности результатов построим график индекса выпуска продукции и индекса цен.

 

Рис. 5 – Индекс выпуска продукции предприятий транспортной промышленности

 

Из полученных результатов видно, что индекс стоимости к 2009 году снижается, т.е. происходит общее снижение объемов производства промышленной продукции и снижение прибыли предприятий от реализации продукции. Это происходит из-за мирового экономического кризиса и увеличения конкуренции. Затем индекс повышается, т.к. предприятий стало значительно меньше, конкуренция снизилась, цены стали расти.

 

Рис. 6 – Индекс цен (индекс Ласпейреса) предприятий транспортной промышленности

 

Индексы цен по Ласпейресу также как индекс стоимости в 2007 году возрастает, затем снижается. Индексы цен по Ласпейресу несколько отличаются от индексов цен табличных, но тенденция у них одинаковая. 

 

Рассмотрим динамику производства продукции транспортной промышленности в ценах 2005 года.

 

Таблица 12 – Динамика производства продукции транспортной промышленности.

 

Годы

Объем продукции, млн. руб.

Абсолютный прирост

Темп роста (%)

Темп прироста (%)

Абсолютные значения 1% прироста

Цепной

базисный

Цепной

базисный

Цепной

базисный

1

2

3

4

5

6

7

8

9

2006

907,8

-

-

-

-

-

-

-

2007

1014,2

106,40

106,40

111,72

111,72

11,72

11,72

9,08

2008

1058,8

44,60

151,00

104,40

116,63

4,40

16,63

10,14

2009

730,4

-328,40

-177,40

68,98

80,46

-31,02

-19,54

10,59

2010

863,0

132,60

-44,80

118,15

95,06

18,15

-4,94

7,30

2011

1090,9

227,90

183,10

126,41

120,17

26,41

20,17

8,63


 

 

 

Рис.7 - Динамика производства продукции транспортной промышленности по отношению к предыдущему году.

 

 

 

Рис.8 - Динамика производства продукции транспортной промышленности по отношению к 2005 году.

 

 

 В этом же разделе  рассмотрим основные фонды предприятий транспортной промышленности. Составим график коэффициентов обновления, выбытия и износа основных фондов в одной координатной плоскости для большей наглядности.

 

 

 

 

Рис. 9 - Коэффициенты обновления, выбытия и износа основных фондов

 

 

Основные фонды предприятий транспортной промышленности стабильны. В 2008-2009 годах ситуация в транспортной промышленности характеризуется резким спадом производства из-за экономического кризиса, но уже к 2010 году объемы производства резко возрастают и продолжают расти. В основных фондах также незначительно возрастает коэффициент обновления, и немного снизился коэффициент износа основных производственных фондов.

2.4. Анализ финансовых  показателей.

 

Проанализируем снижение (повышение) затрат на 1 рубль продукции в процентах к предыдущему году, прибыль и уровень рентабельности в процентах. Исходные данные берутся из таблицы 1. При расчете динамики рентабельности ограничимся лишь изменениями абсолютного прироста, т.к. уровень рентабельности представлен в виде темпов роста.

 

Таблица 13 – Анализ уровня рентабельности

 

годы

Уровень рентабельности

Абсолютное изменение

Цепные

Базисные

1

2

3

4

2005

6,9

-

-

2006

6,1

-0,8

-0,8

2007

6,1

0

-0,8

2008

4,1

-2

-2,8

2009

1,5

-2,6

-5,4

2010

4,8

3,3

-2,1

2011

5,5

0,7

-1,4


 

Анализ затрат на 1 руб. товарной продукции проведем на основе темпов роста, исходя из того, что эти затраты представляют собой темп прироста.

 

Таблица 14 – Анализ затрат на 1 рубль товарной продукции

 

годы

Изменение затрат на 1 руб. товарной продукции

Темп роста (цепной)

1

2

3

2005

98,5

96,55

2006

95,1

101,37

2007

96,4

102,49

0008

98,8

106,48

2009

105,2

96,48

2010

101,5

96,75

2011

98,2

96,55


 

Построим графики, на которых отразим изменение этих показателей.

 

Рис. 10 – изменение затрат на 1 руб. товарной продукции

 

 

 

 

 

 

Рис. 11 – уровень рентабельности

 

Рис. 12 – прибыль от реализации продукции

 

Рентабельность – это показатель, характеризующий доходность, прибыльность и эффективность производства.

Этот показатель соизмеряет доход с затраченными ресурсами.

Таким образом, видно, что с 2007 до 2009 года наблюдается резкое снижение уровня рентабельности. Это вызвано увеличением затрат на один рубль товарной продукции, т.е. произошел рост издержек и, соответственно, снижение рентабельности и прибыли. Прибыль представляет собой конечный финансовый результат деятельности предприятия. Это один из важнейших экономических показателей.

В 2010-2011 годах ситуация улучшается, наблюдается увеличение рентабельности, это связано со снижением затрат. Соответственно в этот период увеличивается прибыль.

Если одновременно проанализировать уровень рентабельности продукции и изменение затрат на один рубль продукции, то можно видеть, что при увеличении затрат снижается уровень рентабельности и, наоборот, при их снижении рентабельность возрастает. Для наглядности построим график.

 

Рис. 13 – Зависимость рентабельности предприятия от уровня затрат

 

3. Выявление основной  тенденции развития и прогнозирование.

 

Основным содержанием метода аналитического выравнивания в рядах динамики является то, что основные тенденции развития yt рассчитываются как функция времени.

Определение теоретических уравнений yt производится на основе так называемой адекватной математической функции, которая наилучшим образом отображает основную тенденцию развития динамики. Подбор адекватной функции осуществляется путем вычисления ошибки аппроксимации, и та функция, у которой эта ошибка меньше является более адекватной.

При выборе числа лет, на которые будет осуществляться прогноз, необходимо учесть то, что в силу экономической нестабильности российской экономики, строить прогнозы на большое количество лет не имеет смысла. Поэтому сделаем прогноз на ближайшие два года: 2012, 2013 гг.

Прогноз может быть точечным и интервальным. Точечный прогноз дается в виде единичного значения прогнозируемой величины, а интервальный охватывает совокупность значений прогнозируемой величины. Проведем точечный прогноз, основанный на перспективной экстраполяции, т.е. на будущее.

Элементарные методы экстраполяции:

- метод на основе выравнивания  по какой-либо аналитической формуле;

- метод среднего абсолютного  прироста;

- метод среднего темпа  роста.

Проведем аналитическое выравнивание ряда, используя прямолинейную функцию и параболу второго порядка.

 

Прямолинейная функция: yt = a0 + a1 * t

Функция параболы второго порядка: Yt = a0 + a1 * t + a2 * t

где, a0 , a1, a2 – параметры

        t – условное время

 

Определение параметров уравнений проводится способом отсчета времени от условного нуля, т.е. ∑t = 0. В этом случае параметры уравнений определяются по формулам:

 

а) для прямолинейной функции:

a0 = ∑y / n

a1 = ∑t*y / ∑t2

где n – количество уровней ряда;

      y – исходные уровни ряда.

 

 

б) для параболы второго порядка;

a0 = (∑t4∑y - ∑t2∑t2y) / (n∑t4 - ∑t2∑t2)

a1 = ∑t * y / ∑t2

a2 = (n∑t2y - ∑t2∑y) / (n∑t4 - ∑t2∑t2)

 

Проведем аналитическое выравнивание ряда по прямолинейной функции.

Все результаты вычислений оформим в виде таблицы.

 

Таблица 15 – Результаты вычислений аналитического выравнивания ряда по прямолинейной функции.

Информация о работе Применение статистических методов при анализе интенсивности развития отрасли транспорт и оборудования