Автор работы: Пользователь скрыл имя, 17 Декабря 2012 в 22:21, курсовая работа
Экспериментальные исследования являются основным источником получения достоверных сведений об объектах реального мира. Такие исследования проводятся с целью выбора рациональных технологических режимов функционирования или оптимизации параметров систем, оценки степени выполнения заданных требований к создаваемым изделиям, выяснения закономерностей функционирования, анализа влияния факторов на показатели качества систем и т.д.
1 Задание 1
2 Выполнение задания 1
3 Задание 2
4 Выполнение задания 2
Список литературы
Параметр оптимизации – это признак, по которому мы хотим оптимизировать процесс. Он должен быть количественным, задаваться числом. Множество значений, которые может принимать параметр оптимизации, называется областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. Например, выход реакции – это параметр оптимизации с непрерывной ограниченной областью определения. Он может изменяться в интервале от 0 до 100%. Число бракованных изделий, число кровяных телец в пробе крови – вот примеры параметров с дискретной областью определения, ограниченной снизу.
Требования к параметру оптимизации. Уметь измерять параметр оптимизации – это значит располагать подходящим прибором. В ряде случаев такого прибора может не существовать или он слишком дорог. Если нет способа количественного измерения результата, то приходится воспользоваться приемом, называемым ранжированием (ранговым подходом). При этом параметрам оптимизации присваиваются оценки – ранги по заранее выбранной шкале: двухбалльной, пятибалльной и т.д. Ранговый параметр имеет дискретную ограниченную область определения. В простейшем случае область содержит два значения (да, нет; хорошо, плохо). Это может соответствовать, например, годной продукции и браку.
Ранг – это количественная оценка параметра оптимизации, но она носит условный (субъективный) характер. Мы ставим в соответствие качественному признаку некоторое число – ранг. Для каждого физически измеряемого параметра оптимизации можно построить ранговый аналог. Потребность в построении такого аналога возникает, если имеющиеся в распоряжении исследователя численные характеристики неточны или неизвестен способ построения удовлетворительных численных оценок. При прочих равных условиях всегда нужно отдавать предпочтение физическому измерению, так как ранговый подход менее чувствителен и с его помощью трудно изучать тонкие эффекты.
Еще одно требование, связанное с количественной природой параметра оптимизации, – однозначность в статистическом смысле. Заданному набору значений факторов должно соответствовать одно с точностью до ошибки эксперимента значение параметра оптимизации.
Для успешного достижения цели исследования необходимо, чтобы параметр оптимизации действительно оценивал эффективность функционирования системы в заранее выбранном смысле. Это требование является главным, определяющим корректность постановки задачи.
Представление об эффективности не остается постоянным в ходе исследования. Оно меняется по мере накопления информации и в зависимости от достигнутых результатов. Это приводит к последовательному подходу при выборе параметра оптимизации. Так, например, на первых стадиях исследования технологических процессов в качестве параметра оптимизации часто используется выход продукта. Однако в дальнейшем, когда возможность повышения выхода исчерпана, нас начинают интересовать такие параметры, как себестоимость, чистота продукта и т.д.
Говоря об оценке эффективности функционирования системы, важно помнить, что речь идет о системе в целом. Часто система состоит из ряда подсистем, каждая из которых может оцениваться своим локальным параметром оптимизации.
Следующее требование к
параметру оптимизации –
Желательно, чтобы параметр
оптимизации имел физический смысл,
был простым и легко
Требование физического смысла связано с последующей интерпретацией результатов эксперимента.
Таким образом, параметр оптимизации должен быть:
– эффективным с точки зрения достижения цели;
– универсальным;
– количественным и выражаться одним числом;
– статистически эффективным;
– имеющим физический смысл, простым и легко вычисляемым.
В тех случаях, когда возникают трудности с количественной оценкой параметров оптимизации, приходится обращаться к ранговому подходу. В ходе исследования могут меняться априорные представления об объекте исследования, что приводит к последовательному подходу при выборе параметра оптимизации.
Из многих параметров, характеризующих объект исследования, только один, часто обобщенный, может служить параметром оптимизации. Остальные рассматриваются как ограничения.
В настоящее время используется свыше 20 различных критериев оптимальности планов, которые подразделяются на две основные группы. К первой группе относят критерии, связанные с ошибками оценок коэффициентов, а ко второй – с ошибкой оценки поверхности отклика [2, 3, 6]. Далее будут охарактеризованы только те критерии, которые наиболее часто применяются при решении задач оптимизации, описания поверхности отклика и оценки влияния факторов.
Критерии первой группы представляют интерес для задач оптимизации, выделения доминирующих (наиболее значимых) параметров на начальных этапах решения оптимизационных задач или для выявления несущественных параметров в задачах восстановления закономерности функционирования объекта. Геометрическое истолкование свойств ошибок коэффициентов связано со свойствами эллипсоида их рассеяния, определяемого математическим ожиданием и дисперсией значений ошибок. Пространственное расположение, форма, и размер эллипсоида полностью зависят от плана эксперимента.
Критерию D-оптимальности соответствует минимальный объем эллипсоида рассеяния ошибок (минимум произведения всех дисперсий коэффициентов полинома). В соответствующем плане эффекты факторов максимально независимы друг от друга. Этот план минимизируют ожидаемую ошибку предсказания функции отклика. Критерию A-оптимальности соответствует план с минимальной суммарной дисперсией всех коэффициентов. Критерию E-оптимальности – план, в котором максимальная дисперсия коэффициентов будет минимальна.
Выбор критерия зависит от задачи исследования, так при изучении влияния отдельных факторов на поведение объекта применяют критерий Е - оптимальности, а при поиске оптимума функции отклика – D-оптимальности. Если построение D-оптимального плана вызывает затруднения, то можно перейти к А - оптимальному плану, построение которого осуществляется проще.
Критерии второй группы используются при решении задач описания поверхности отклика, определения ограничений на значения параметров. Основным здесь является критерий G-оптимальности, который позволяет построить план с минимальным значением наибольшей ошибки в описании функции отклика. Применение G-оптимального плана дает уверенность в том, что в области планирования нет точек с чрезмерно большой ошибкой описания функции.
Среди всех классов планов основное внимание в практической работе уделяется ортогональным и ротатабельным планам.
Ортогональным называется план, для которого выполняется условие парной ортогональности столбцов матрицы планирования, в частности, для независимых переменных, где N – количество точек плана эксперимента, k – количество независимых
факторов. При ортогональном планировании коэффициенты полинома определяются независимо друг от друга – вычеркивание или добавление слагаемых в функции отклика не изменяет значения остальных коэффициентов полинома. Для ортогональных планов эллипсоид рассеяния ориентирован в пространстве так, что направления его осей совпадают с направлениями координат пространства параметров.
Использование ротатабельных пл
По соотношению между
Для некоторых планов важную роль играет свойство композиционности . Так, композиционные планы для построения полиномов второго порядка получают добавлением некоторых точек к планам формирования линейных функций. Это дает возможность в задачах исследования сначала попытаться построить линейную модель, а затем при необходимости, добавив наблюдения, перейти к моделям второго порядка, использую ранее полученные результаты и сохраняя при этом некоторое заданное свойство плана, например его ортогональность.
Между критериями оптимальности и методами построения оптимальных планов экспериментов существует жесткая связь. Построение планов производится или с использованием каталогов планов или с использованием непосредственно методов планирования экспериментов, что является непростой задачей и требует достаточно высокой квалификации исследователя в области ТПЭ.
Кроме рассмотренных критериев
в планировании экспериментов вполне
естественно применяется
Как было отмечено выше, одной из областей применения ТПЭ является решение задач оптимизации, причем непосредственно для поиска оптимальных решений используются градиентные методы. Вычисление оценки градиента осуществляется на основе обработки экспериментальных данных. Хотя градиентный метод оптимизации не является составной частью ТПЭ, в целях удобства освоения материала далее приведено его краткое изложение.
Поиск оптимальных значений параметров
является одной из важных задач, решаемых
при создании новых технических
систем, управлении производством или
технологическими процессами. В соответствии
с теорией эффективности необхо
сформировать критерий эффективности
(функцию отклика в терминах ТПЭ).
В большинстве случаев
выделить управляемые и
определить ограничения на значения параметров.
Задача оптимизации
Реализация задачи оптимизации, основанная на применении ТПЭ, как и любой задачи экспериментального исследования, начинается с определения объекта анализа, цели исследования, изучении сущности исследуемого процесса, анализе имеющихся ресурсов, возможности проведения экспериментов с изучаемым объектом в необходимом диапазоне изменения факторов.
Объектом анализа выступает заданный критерий эффективности исследуемой системы, рассматриваемый как функция от существенных параметров системы и внешней среды. Система может представлять собой реальный физический объект или его модель – физическую или математическую (имитационную, сложную аналитическую).
Изучение процесса функционирования объекта позволяет выявить факторы, оказывающие существенное влияние на функцию отклика. Выбор существенных переменных потенциально определяет степень достижения адекватности получаемой модели: отсутствие в исходном перечне существенных параметров, да еще и произвольно меняющихся в ходе эксперимента, не позволяет правильно решить задачу оптимизации; включение несущественных параметров усложняет модель, вызывает значительное увеличение объема экспериментов, хотя по результатам исследования несущественность соответствующих параметров будет выявлена.
Для каждой переменной следует определить диапазон и характер изменения (непрерывность или дискретность). Ограничения на диапазон изменений могут носить принципиальный или технический характер. Принципиальные ограничения факторов не могут быть нарушены при любых обстоятельствах. Эти ограничения задаются исходя из физических представлений (например, емкость устройств памяти всегда имеет положительное значение). Второй тип ограничений связан с технико-экономическими соображениями, например, с наличием соответствующего аппаратно-программного комплекса, принятой технологией обработки информации.
Выделение области изменения факторов является не формальной задачей, а основывается на опыте исследователя. В рамках области допустимых значений факторов необходимо выделить начальную область планирования эксперимента. Этот выбор включает определение основного (нулевого) уровня как исходной точки построения плана и интервалов варьирования. Интервал варьирования задает относительно основного уровня значения фактора, при которых будут производиться эксперименты. Обычно интервалы являются симметричными относительно центрального значения. Интервал варьирования должен отвечать двум ограничениям: его применение не должно приводить к выходу фактора за пределы области допустимых значений; он должен быть больше погрешности задания значений фактора (в противном случае уровни фактора станут не различимыми). В пределах этих ограничений выбор конкретного значения является неформальной процедурой, учитывающей ориентировочную информацию о кривизне поверхности функции отклика.