Теория и техника научного эксперимента

Автор работы: Пользователь скрыл имя, 17 Декабря 2012 в 22:21, курсовая работа

Краткое описание

Экспериментальные исследования являются основным источником получения достоверных сведений об объектах реального мира. Такие исследования проводятся с целью выбора рациональных технологических режимов функционирования или оптимизации параметров систем, оценки степени выполнения заданных требований к создаваемым изделиям, выяснения закономерностей функционирования, анализа влияния факторов на показатели качества систем и т.д.

Содержание

1 Задание 1
2 Выполнение задания 1
3 Задание 2
4 Выполнение задания 2
Список литературы

Прикрепленные файлы: 1 файл

Задание 1.doc

— 346.00 Кб (Скачать документ)

Факторы v1, v2, …,  vk измеряются с пренебрежимо малой ошибкой по сравнению с ошибкой в определении величины y(учет помех в задании факторов приводит к трудно разрешимым проблемам в оценке коэффициентов функции отклика). Ошибка в определении значения функции отклика объясняется не столько погрешностью измерений, сколько влиянием на результат работы системы неучтенных или случайных факторов, например различиями в формируемой последовательности случайных чисел при статистическом моделировании;

Дисперсии среднего значения функции отклика  в различных точках равны друг другу (выборочные оценки дисперсии однородны). Это означает, что при многократных повторных наблюдениях над величиной yu при некотором наборе значенийv1u, v2u, …,  vku, получаемая оценка дисперсии среднего значения не будет отличаться от оценки дисперсии, полученной при многократных наблюдениях для любого другого набора значений независимых переменных v1s, v2s, …,  vks.

Указанные допущения позволяют  использовать для расчетов коэффициентов полинома МНК, который дает эффективные и несмещенные оценки коэффициентов и обеспечивает простоту проведения самих расчетов. Применение МНК, вообще говоря, не требует соблюдения нормального распределения результатов наблюдения. Этот метод в любом случае дает решение, минимизирующее сумму квадратов отклонений результатов наблюдения от значений функции отклика. Допущение  о нормальном распределении используется при проведении различного рода проверок, например, при проверке адекватности функции отклика и экспериментальных данных. Естественно, что точность оценок коэффициентов функции отклика повышается с увеличением числа опытов, по которым вычисляются коэффициенты.

 

 

 

 

 

Пассивный и активный эксперимент, область планирования, план эксперимента, уровни и интервалы варьирования факторов.

 

Теория предполагает, что эксперимент  может быть пассивным и активным.

При пассивном эксперименте информация об исследуемом объекте накапливается путем пассивного наблюдения, то есть информацию получают в условиях обычного функционирования объекта. Активный эксперимент проводится с применением искусственного воздействия на объект по специальной программе.

При пассивном эксперименте существуют только факторы в виде входных  контролируемых, но неуправляемых переменных, и экспериментатор находится в положении пассивного наблюдателя. Задача планирования в этом случае сводится к оптимальной организации сбора информации и решению таких вопросов, как выбор количества и частоты измерений, выбор метода обработки результатов измерений.

Наиболее часто целью пассивного эксперимента является построение математической модели объекта, которая может рассматриваться  либо как хорошо, либо как плохо  организованный объект. В хорошо организованном объекте имеют место определенные процессы, в которых взаимосвязи входных и выходных параметров устанавливаются в виде детерминированных функций. Поэтому такие объекты называют детерминированными. Плохо организованные или диффузные объекты представляют собой статистические модели. Методы исследования с использованием таких моделей не требуют детального изучения механизма процессов и явлений, протекающих в объекте.

Примером пассивного эксперимента может быть анализ работы схемы, которая  не имеет входов, только выходы, и  повлиять на ее работу невозможно.

Хорошим примером пассивного эксперимента с диффузным объектом являются измерения  метеорологических параметров (температуры, скорости ветра и т.д.) при природных  катаклизмах.

Активный эксперимент позволяет быстрее и эффективнее решать задачи исследования, но более сложен, требует больших материальных затрат и может помешать нормальному ходу технологического процесса. Иногда отсутствует возможность проведения активного эксперимента (например, при исследовании явлений природы). Тем не менее, учитывая преимущества активного эксперимента, тогда, когда это возможно, предпочтение отдают ему.

При активном эксперименте факторы  должны быть управляемыми и независимыми.

Активный эксперимент предполагает возможность воздействия на ход  процесса и выбора в каждом опыте уровней факторов. При планировании активного эксперимента решается задача рационального выбора факторов, существенно влияющих на объект исследования, и определения соответствующего числа проводимых опытов. Увеличение числа включенных в рассмотрение факторов приводит к резкому возрастанию числа опытов, уменьшение - к существенному увеличению погрешности опыта. Фактор считается заданным только тогда, когда при его выборе указывается его область определения – совокупность значений, которые может принимать данный фактор. В эксперименте используется ограниченная часть области определения, задаваемая обычно в виде дискретного множества уровней. Выбранные факторы должны быть однозначно управляемыми и операциональными, то есть поддающимися регулированию с поддержанием на заданном уровне в течение всего опыта при соблюдении последовательности необходимых для этого действий. Должна быть назначена также точность измерения факторов в выбранном диапазоне измерения.

Совокупности факторов должны отвечать требованиям совместимости и независимости. Соблюдение первого требования означает, что все комбинации факторов осуществимы и безопасны, второго - возможность установления фактора на любом уровне независимо от уровней других факторов.

План эксперимента – совокупность данных определяющих число, условия и порядок проведения опытов.

Планирование эксперимента – выбор  плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии  экспериментирования (от получения  априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Цель планирования эксперимента –  нахождение таких условий и правил проведения опытов при которых удается  получить надежную и достоверную  информацию об объекте с наименьшей затратой труда, а также представить  эту информацию в компактной и удобной форме с количественной оценкой точности.

Пусть интересующее нас свойство (Y) объекта зависит от нескольких (n) независимых переменных (Х1, Х2, …, Хn) и мы хотим выяснить характер этой зависимости - Y=F(Х1, Х2, …, Хn), о которой  мы имеем лишь общее представление. Величина Y – называется “отклик”, а сама зависимость Y=F(Х1,Х2, …, Хn) – “функция отклика”.

Отклик должен быть определен количественно. Однако могут встречаться и качественные признаки Y. В этом случае возможно применение рангового подхода. Пример рангового подхода - оценка на экзамене, когда одним числом оценивается сложный комплекс полученных сведений о знаниях студента.

Независимые переменные Х1, Х2, …, Хn –  иначе факторы, также должны иметь  количественную оценку. Если используются качественные факторы, то каждому их уровню должно быть присвоено какое-либо число. Важно выбирать в качестве факторов лишь независимые переменные, т.е. только те которые можно изменять, не затрагивая другие факторы. Факторы должны быть однозначными. Для построения эффективной математической модели целесообразно провести предварительный анализ значимости факторов (степени влияния на функцию), их ранжирование и исключить малозначащие факторы.

Диапазоны изменения факторов задают область определения Y. Если принять, что каждому фактору соответствует координатная ось, то полученное пространство называется факторным пространством. При n=2 область определения Y представляется собой прямоугольник, при n=3 – куб, при n >3 - гиперкуб.

Для планов второго порядка область  планирования может:

Быть естественной, то есть включать область планирования планов первого  порядка и дополнительные точки (такие планы называются композиционными). Дополнительные точки могут выходить за область плана первого порядка  – единичного гиперкуба. В этом случае опыты в них реализуются при установлении факторов за пределами варьирования. Это надо учитывать при определении области совместимости факторов.

Не выходить за пределы единичного гиперкуба, то есть для всех точек  плана выполняется условие .

Не выходить за пределы единичного гипершара, определяемую соотношением таких значений факторов в плане, что .

Во втором и третьем случаях  используют специальные приемы выполнения приведенных соотношений в плане. План с одной областью планирования можно перестроить в план другой областью планирования.

Если уже был ранее сформирован  план ПФЭ, но точность его функции  отклика не удовлетворяет, то мы можем  достроить этот план до плана второго  порядка (композиционный план) и сформировать функцию отклика в виде полного квадратичного полинома, без потери информации о ранее сделанных опытах.

Регрессионный анализеримент наименьший кВ

 

Как только мы начинаем говорить о пригодности модели или о  значимости коэффициентов, приходится вспоминать о статистике: и с этого  момента МНК превращается в регрессионный анализ.

Регрессионный анализ, как  всякий статистический метод, применим при определенных предположениях, постулатах:

Постулат № 1. Параметр оптимизации есть случайная величина с нормальным законом распределения. Дисперсия воспроизводимости - одна из характеристик этого закона распределения.

Постулат № 2. Дисперсия  не зависит от абсолютной величины .

Постулат № 3. Значения факторов суть не случайные величины. Это утверждение практически означает, что установление каждого фактора на заданный уровень и его поддержание существенно точнее, чем ошибка воспроизводимости.

Проверка адекватности модели. Проверка на пригодность полученной модели (проверка адекватности) начинают с вычисления остаточной дисперсии, то есть дисперсии адекватности .

 

   (1.4)

 

где - число опытов (МПЭ),

- число коэффициентов модели.

- разность между реальным значением и предсказанным по модели.

Числом степеней свободы  в статистике называется разность между  числом опытов и числом коэффициентов (констант), которые уже вычислены  по результатам этих опытов независимо друг от друга.

Например, проведен полный фактический эксперимент и нашли линейное уравнение регрессии,

.

Примечание: Параллельные опыты нельзя считать самостоятельными, так как они дублируют друг друга. В связи с этим, они все  дают одну степень свободы.

Необходимо запомнить правило: в планировании эксперимента число степеней свободы для равно числу различных опытов, результаты которых используются при подсчете коэффициентов регрессии, минус число определяемых коэффициентов.

В статистике разработан критерий, который очень удобен для проверки гипотезы об адекватности модели. Он называется F критерием Фишера и определяется:

,     (1.5)

где - дисперсия адекватности;

- дисперсия воспроизводимости.

Удобство использования  - критерия состоит в том, что проверку гипотезы можно свести к сравнению с табличным значением. Таблица построена следующим образом. Столбцы связаны с определенным числом степеней свободы для числителя строки для знаменателя . На пересечении соответствующих строки и столбца стоят критические значения - критерия. Как правило, в технических задачах используется уровень значимости 0,05.

Если рассчитанное значение -критерия не превышает табличного, то с соответствующей доверительной вероятностью модель можно считать адекватной. При превышении табличного значения гипотеза отвергается. Для запишем общую формулу:

,      (1.6)

где - число опытов;

- число параллельных опытов в  -ой строке матрицы;

- среднее арифметическое из  , параллельных опытов;

- предсказанное по уравнению  регрессии значение в этом  опыте.

 

Задачи оптимизации  в экстремальных экспериментах

 

Эксперимент, который  ставится для решений задач оптимизации, называется экстремальным. Примерами задач оптимизации являются выбор оптимального состава многокомпонентных смесей, повышение производительности действующей установки, повышение качества продукции и снижение затрат на её получение. Прежде чем планировать эксперимент необходимо сформулировать цель исследования. От точной формулировки цели зависит успех исследования. Необходимо также удостовериться, что объект исследования соответствует предъявляемым ему требованиям. В технологическом исследовании целью исследования при оптимизации процесса чаще всего является повышение выхода продукта, улучшение качества, снижение себестоимости.

Информация о работе Теория и техника научного эксперимента