Автор работы: Пользователь скрыл имя, 06 Мая 2015 в 00:41, курсовая работа
В промышленности электрическая энергия из тепловой получается путем промежуточного преобразования её в механическую работу. Превращение тепла в электричество с достаточно высоким кпд без промежуточного преобразования его в механическую работу было бы крупным шагом вперёд. Тогда отпала бы надобность в тепловых электростанциях, использовании на них тепловых двигателей, которые имеют относительно низкий кпд, весьма сложны и требуют довольно квалифицированного ухода при эксплуатации.
Введение
Парогазовые установки
Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии
Экономическая целесообразность форсированного внедрения ПТУ и ГТУ при обновлении тепловых электростанций
Комплексный подход к строительству и реконструкции электростанций с применением ПУ и ПГУ
Отработка технических решений на собственных электростанциях – залог надежной работы оборудования у заказчика
Конденсационная парогазовая электростанция для надежного энергоснабжения промышленных потребителей
Реконструкция паротурбинных электростанций - эффективный путь перевооружения энергетики
Опыт эксплуатации газопаротурбинной установки ГПУ-16К с впрыском пара Теплофикационные парогазовые установки для замены устаревшего оборудования ТЭЦ ОАО «Ленэнерго»
Повышение эксплуатационных характеристик энергетических установок
Сравнение паросилового блока с Т-265 и энергоблока с двумя ПГУ-170Т
Масштабы внедрения ПГУ и ГТУ в среднесрочной перспективе
В последние годы Березовская ГРЭС практически не работала. Удельный расход топлива на выработку 1 кВт*Ч на ней заметно превышал расход тепла на паротурбинных блоках сверхкритического давления (СКД), поэтому запускать в работ станцию при избытке мощности было нецелесообразно.
Руководство ГРЭС, Брестэнерго, Министерство энергетики Белоруссии искали способы восстановления ГРЭС с применением газотурбинных технологий.
Использование высокотемпературных газов газотурбинной установки возможно по многим схемам. Наиболее экономичной (по условиям затрат тепла на выработку 1 кВт*ч) признана парогазовая установка (ПГУ) по схеме: ГТУ — котел-утилизатор — паровая турбина. Топливо при этом сжигается только в камере сгорания ГТУ. Такая схема оборудования, и стоимость установленной мощности получается достаточно высокая.
Есть и второй, менее эффективный, но и менее затратный путь — дожигание газов, содержащих большое количество кислорода, в топочных камерах энергетических котлов (ЭК). Это парогазовые установки сбросные (ПГУС). При схеме дожигания газотурбинная установка является надстройкой над существующим оборудованием паросиловой установки (ПСУ). При этой схеме можно сохранить практически всю ПСУ, несколько модернизировав котел.
При реализации схемы ПГУС возможны различные варианты, выбор которых зависит от местных условий и требований заказчика.
Именно второй вариант — надстройка блоков газотурбинными установками и реконструкция блока ПСУ избрали специалисты «БелНИПИ-энергопром» для Березовской ГРЭС.
Приступая к работе, специалисты «Красного котельщика» принимали в расчет все факторы. На Березовской ГРЭС установлено 6 паротурбинных блоков по 150 МВт. Каждый блок состоит из паровой турбины производства НПО «Турбоатом» и двух прямоточных котлов ПК-38 производства «ЗиО-Подольск» производительностью 270 т/ч, Р=140 ат, с температурой перегрева пара 545°С. Блоки запущены в эксплуатацию в начале 1960-х годов и проработали более 250 тыс. часов.
Для надстройки были рассмотрены два типа газотурбинных установок: GT10 фирмы Alstom мощностью 23,5 МВт и UGT 25000 НПКГ «Зоря»-«Машпроект» мощностью 25 МВт. Отличие UGT 25000 от GT10 — больший расход газов при более низкой их температуре.
Для таганрогских котлостроителей работа осложнялась еще и тем, что ранее ТКЗ не проектировал предполагает применение нового в блок ПГУС — Парогазовая установка на Березовской ГРЭС и не изготавливал прямоточные котлы на давление 140 атмосфер. По сравнению с прямоточными котлами СКД, серийно изготавливаемыми заводом, они имеют свою специфику. В первую очередь это касается «навивки» экранов топочной камеры, которая на котле ПК-38 выполнена из спиральных лент с высоким тепловосприятием в нижней радиационной части.
В короткий срок на предприятии был разработан проект реконструкции котла ПК-38 в низконапорный парогенератор при применении как GT10, так и ГТГ-25.
Основные технические требования, реализованные в этом проекте:
■ количество газов ГТУ соответствовало расходным характеристикам котла по газовой стороне;
■ поверхности нагрева, расположенные ниже входной ступени промежуточного пароперегревателя, — экономайзер и воздухоподогреватель — удалены. На их место установлены новые поверхности нагрева: экономайзер, газовый подогреватель воды высокого давления, газовый подогреватель воды низкого давления, выполненные из труб с продольным оребрением, что позволяет эксплуатировать котел на газе и на мазуте. При реконструкции блока дополнительные поверхности нагрева котла частично замещают регенерацию высокого и низкого давления турбины (расчеты выполнялись совместно с НПО «Турбоатом» для оптимизации поверхностей нагрева и режимов работы паровой турбины);
■ количество горелок увеличено в полтора раза. Это необходимо для поддержания скоростного режима в горелках при работе в широком диапазоне нагрузок при температуре окислителя (воздуха либо газов) от 50 до 515°С;
■ переделан воздушный тракт, так как температура газов за ГТУ превышает 500°С, что значительно выше температуры горячего воздуха. Также изменено количество горелок;
■ для снижения выбросов NOX на реконструированном котле применена схема ступенчатого сжигания газа;
■ установлены вентиляторы дополнительного воздуха (ВДВ) и смеситель для смешения этого воздуха с газами ГТУ, так как для номинальной нагрузки котла содержания кислорода в выхлопных газах турбин недостаточно;
■ переделана нижняя радиационная часть (НРЧ) котла для размещения новых горелок и схемы ступенчатого сжигания газа. В связи с увеличением тепловосприятия водяного экономайзера установлена защита НРЧ во избежание попадания на вход закипевшей воды;
■ при работе на мазуте в режиме ПСУ установлен калорифер для подогрева воздуха до 180º C;
■ блок может работать как в режиме ПГУС, так и раздельно. Для этого на тракте от ГТУ к низконапорному генератору установлен быстродействующий пускозащитный клапан. При останов дымососов на генераторе клапан с максимальной скоростью отключает ГТУ от котла, переводя его на выхлоп в атмосферу;
Опыт эксплуатации газопаротурбинной установки ГПУ-16К с впрыском пара
Ю.Н. Бондин, В.А. Кривуца, С.Н. Мовчан, В.И. Романов
ГП НПКГ «Зоря»-«Машпроект»
В.Н. Коломеев - ДК «Укртрансгаз»
А.П. Шевцов - НУК им. адмирала Макарова
К августу 2004 года наработка газоперекачивающей установки ГПУ-16К на магистральном газопроводе «Прогресс» составила 1600 часов. Результаты эксплуатации установки, работающей по технологии «Водолей», подтвердили правильность заложенных при проектировании технических решений.
Общая характеристика
Газоперекачивающая установка ГПУ-16К мощностью 16 МВт с газотурбинным приводом, работающим по циклу с энергетическим и экологическим впрыском пара и дальнейшей его конденсацией, применена на КС «Ставищенская». После проведения монтажных и пусконаладочных работ ГПУ-16К в ноябре 2003 года была предъявлена Государственной комиссии и передана в опытно-промышленную эксплуатацию.
В состав ГПУ-16К, тепловая схема которой приведена на рис. 1, входят:
■ контактная газопаротурбинная установка КГПТУ-16К (разработана и изготовлена НПКГ «Зоря»-«Машпроект»);
■ центробежный нагнетатель газа НЦ-16;
■ вспомогательные технологические системы (ВТС);
■ системы автоматического управления ГПТУ-16К и ВТС.
Установка КГПТУ-16К («Водо-лей-16») включает газотурбинный двигатель, котел-утилизатор и контактный конденсатор. Такая схема позволяет увеличить эффективность использования топлива и снизить затраты на химводоподготовку за счет утилизации тепла и массы отработавшей газопаровой смеси.
Основная особенность установки в том, что она может работать с замкнутым циклом по воде. Пар и газообразная смесь проходят через установленный на выходе из котла-утилизатора контактный конденсатор, где газообразная смесь охлаждается до температуры конденсации. Предварительно охлажденная в холодильнике вода подается через фильтр в оросительное устройство конденсатора. Полученный из газопаровой смеси конденсат сливается самотеком (вместе с охлаждающей водой) в резервуар хранения.
Положительный эффект работы установки заключается в способности генерировать дополнительное количество пресной воды, образующейся в результате химической реакции окисления углеводородного топлива при сжигании в камере сгорания.
В газотурбинном двигателе, входящем в состав КГПТУ-16К, был выполнен ряд доработок, в основном по камере сгорания и турбинам. В каждую жаровую трубу и топливную форсунку камеры сгорания был организован подвод энергетического и экологического пара. При этом основные элементы камеры сгорания остались без изменения. Доработка турбин была направлена на согласование их пропускных способностей с увеличенными расходами рабочего тела. Основные геометрические размеры проточной части турбин сохранены, и обеспечены необходимые запасы устойчивости компрессоров.
Газотурбинный двигатель и центробежный нагнетатель газа находятся в одном укрытии, на единой раме, образуя газоперекачивающий агрегат. Вспомогательные технологические системы обеспечивают охлаждение, очистку, подготовку циркуляционной, питательной и добавочной воды.
Пусконаладочные работы и их результаты
При проведении пусконаладочных работ ГПУ-16К необходимо было:
■ достигнуть эффективной утилизации тепла уходящих газов в котле-утилизаторе;
■ организовать подвод в ГТД энергетического и экологического пара, полученного при утилизации тепла, и улавливание части паров воды из парогазовой смеси на выходе установки:
■ отрегулировать режимы работы вспомогательных технологических систем;
■ отладить системы автоматического управления КГПТУ и ВТС и наладить их совместную работу.
В процессе пусконаладочных работ были реализованы мероприятия, которые позволили снизить массовые потери газопаровой смеси по выхлопному тракту установки, обеспечить эффективную работоспособность котла-утилизатора при его питании как обессоленной, так и умягченной водой при общем солесодержании питательной воды не более 1000 мг/л.
Основные результаты этих мероприятий подтвердили на практике характеристики газотурбинного двигателя, котла-утилизатора, контактного конденсатора и систем, обеспечивающих работу ГПУ-16К.
Согласно Программам предварительных и приемочных испытаний, были про ведены официальные 72-часовые испытания. Отдельные технические показатели, подтверждающие их соответствие ТЗ, приведены в табл.
При проведении испытаний были получены следующие результаты:
■ эффективность установки при мощности 16 МВт — 42,1% в условиях компрессорной станции (45% по ISO 2314);
■ содержание вредных выбросов в уходящих газах: NOX — 54 мг/нм3, СО - 58 мг/нм3;
■ температура парогазовой смеси за установкой — 25...35°С;
■ утилизация воды из уходящей газопаровой смеси (расчетная) -1,0...1Д;
Содержание солей в циркулирующей котловой воде при длительной непрерывной работе установки практически постоянно и даже уменьшается вследствие эффективной продувки сепаратора.
В ходе пусконаладочных работ были выполнены сравнительные испытания на экономичность установки ГПУ-16К и агрегата ГПА-16 с газотурбинным двигателем ДЖ59. Выбор ГПА-16 для сравнения с установкой, работающей по схеме «Водолей», не случаен и обусловлен следующими факторами:
■ одинаковая номинальная мощность установок;
■ широкое применение двигателей ДЖ59 на компрессорных станциях Украины и России (более 150 шт.);
■ идентичность условий работы (сравниваемые установки эксплуатировались параллельно в одном цехе компрессорной станции).
Результаты сравнительных испытаний (рис. 2) подтвердили снижение потребления топливного газа установкой ГПУ-16К по сравнению с агрегатом ГПА-16 на 27-32%.
Задачи опытно-промышленной эксплуатации и перспективы применения установки
В настоящее время осуществляется опытно-промышленная эксплуатация установки ГПУ-16К в условиях компрессорной станции при работе на магистральном газопроводе «Прогресс».
В процессе эксплуатации установки, которая будет продолжаться в течение 4000 часов, необходимо:
■ определить основные эксплуатационные параметры оборудования ГПУ-16К и их изменение в процессе работы;
■ на основании анализа эксплуатации оборудования разработать мероприятия по его оптимизации, внедрить их и проверить эффективность;
■ разработать рекомендации по промышленной эксплуатации газоперекачивающей установки и подготовить ее к проведению Межведомственных испытаний.
На 1 августа 2004 года наработка ГПУ-16К составила 1600 часов. Результаты эксплуатации установки, работающей по схеме «Водолей», подтвердили правильность принятых решений по проектированию ее узлов и агрегатов и по выбору оборудования. Это создает предпосылки к дальнейшему применению таких установок на компрессорных станциях магистральных газопроводов.
В частности, согласно планам реконструкции ДК «Укртрансгаз» предусмотрено введение ГПУ-16К вместо ГПА-16 № 4 на компрессорной станции «Ставищенская» (УМГ «Черкассытрансгаз»). Такое решение позволяет использовать уже опробованные вспомогательные технологические системы для второй установки ГПУ-16К.
Учитывая, что срок эксплуатации ГПА-16 на отдельных компрессорных станциях Украины и России составляет более 10 лет, использование при их модернизации установок ГПУ-16К является разумной альтернативой.
Теплофикационные парогазовые установки для замены устаревшего оборудования ТЭЦ ОАО «Ленэнерго»
В статье приведены основные характеристики, тепловые схемы и состав оборудования теплофикационных парогазовых установок (ПГУ), разрабатываемых для замены устаревших паросиловых блоков. Описан способ регулирования электрической мощности теплофикационных ПГУ с котлами-утилизаторами при заданной тепловой мощности.
B. Безлепкин - С.-Петербургский государственный политехнический университет