Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии

Автор работы: Пользователь скрыл имя, 06 Мая 2015 в 00:41, курсовая работа

Краткое описание

В промышленности электрическая энергия из тепловой получается путем промежуточного преобразования её в механическую работу. Превращение тепла в электричество с достаточно высоким кпд без промежуточного преобразования его в механическую работу было бы крупным шагом вперёд. Тогда отпала бы надобность в тепловых электростанциях, использовании на них тепловых двигателей, которые имеют относительно низкий кпд, весьма сложны и требуют довольно квалифицированного ухода при эксплуатации.

Содержание

Введение
Парогазовые установки
Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии
Экономическая целесообразность форсированного внедрения ПТУ и ГТУ при обновлении тепловых электростанций
Комплексный подход к строительству и реконструкции электростанций с применением ПУ и ПГУ
Отработка технических решений на собственных электростанциях – залог надежной работы оборудования у заказчика
Конденсационная парогазовая электростанция для надежного энергоснабжения промышленных потребителей
Реконструкция паротурбинных электростанций - эффективный путь перевооружения энергетики
Опыт эксплуатации газопаротурбинной установки ГПУ-16К с впрыском пара Теплофикационные парогазовые установки для замены устаревшего оборудования ТЭЦ ОАО «Ленэнерго»
Повышение эксплуатационных характеристик энергетических установок
Сравнение паросилового блока с Т-265 и энергоблока с двумя ПГУ-170Т
Масштабы внедрения ПГУ и ГТУ в среднесрочной перспективе

Прикрепленные файлы: 1 файл

Парогазовые установки.doc

— 509.00 Кб (Скачать документ)

3. ПГУ-КЭС на базе  установки К-6-1,6У с использованием  дополнительного сжигания топлива  перед КУ в среде выхлопных газов ГТУ.

Предварительный анализ характеристик турбины К-6-1,6У и теплового потенциала выхлопных газов агрегата ГТГ-15 показал неполную загрузку данной ПТУ паром. Величина загруженности при среднегодовой температуре наружного воздуха составляет около 72,5% от номинального расхода пара (при отрицательных tHB она может снижаться до 50% и ниже). Для увеличения и стабилизации расхода и параметров генерируемого в котле-утилизаторе пара возможно использование дожигания топлива.

Для каждого из рассмотренных способов перевооружения были проведены расчеты элементов схемы и установки в целом. Ввиду отсутствия серийных котлов-утилизаторов для генерации пара необходимых параметров, проведена серия предварительных расчетов для оценки поверхностей нагрева КУ и их компоновки. Расчеты проводились с использованием методик и программных средств, разработанных в НИЛ «ГТУ и ПГУ ТЭС» МЭИ на основе нормативных документов. Конструкторский расчет КУ проводился для характеристик ГТУ, соответствующих условиям среднегодовой температуры рассматриваемого региона tHB=10,4°C.

На основе результатов, полученных для среднемесячных температур, были определены суммарные годовые и среднегодовые показатели тепловой экономичности ПГУ-КЭС. При этом количество часов работы станции в году принято равным 8000 (табл. 1).

 

Годовые показатели работы вариантов ПГУ-КЭС на базе ГТУ типа ПТ-15 Таблица 1

 

ПГУ-КЭС

ГТЭС

 

Вар. 1

Вар. 2

Вар. 3

 

Годовой отпуск электрической энергии потребителю, МВт«ч:

в том числе:

- от ГТУ

- от ПТУ

297218

232592

64626

302325

232592

69733

326717

232190

94527

236698

236698

-

Годовой расход газового топлива, тыс. кубм

83361

83361

92552

83361

Среднегодовая электрическая мощность (нетто), МВт

37,15

37,80

40,84

29,59

Среднегодовой кпд производства электроэнергии (нетто), %

35,81

36,43

35,46

28,52

Среднегодовой расход условного топлива на единицу отпущенной электроэнергии, г/кВт*ч

343,4

337,6

346,9

431,3


Здесь также представлены показатели работы ГТУ по простому циклу (без утилизации тепла выхлопных газов). Вариантам 1 и 3 соответствуют показатели двух парогазовых моноблоков, варианту 2 — одного парогазового дубль- блока ГТЭС -двух газотурбинных установок ГТГ-15 простого цикла.

На основании анализа результатов расчета прирост кпд по производству электроэнергии нетто, в зависимости от варианта, составляет 7-8% (абс.) по сравнению с показателями работы ГТУ в простом цикле. Как видно из табл. 1, реализация технического перевооружения при оптимальных начальных параметрах пара (вариант 2) приводит к наибольшему приросту кпд. Дополнительное сжигание топлива перед КУ (вариант 3) для обеспечения ПТУ К-6-1,6У паром наряду с увеличением мощности установки приводит к снижению кпд производства электроэнергии, по сравнению с вариантом без дожигания (вариант 1).

Полученные показатели тепловой экономичности и суммарные годовые показатели являются исходной информацией для проведения исследований экономической эффективности проекта реконструкции ГТЭС. При этом основой методического подхода является сопоставление капитальных вложений в проведение реконструкции и прироста прибыли в результате ее проведения. При предлагаемых способах технического перевооружения повышается электрическая мощность, а также тепловая экономичность установки. В этом случае прирост прибыли в рамках одного года после создания на базе действующей ГТУ парогазовой установки можно выразить как (р./год):

- текущий тариф на электроэнергию (принят постоянным в рамках года, р./ МВт*ч);

- электрическая мощность на клеммах генератора паровой турбины (МВт);

  - электроэнергия для обеспечения собственных нужд ПТУ;

- электрическая мощность газотурбинной установки при работе в простом цикле (МВт);

- продолжительность соответствующего  i-го месяца (ч.);

- количество часов вывода электростанции  из-под нагрузки (для планового  ремонта и т.п.); i=1...12;

- годовой расход натурального топлива в камеры дожигания КУ (кг/год);

- цена топлива, сжигаемого в камере дожигания КУ (принята постоянной в рамках года, р./кг);

- коэффициент снижения мощности ГТУ, учитывающий изменение мощности ГТУ из-за дополнительного аэродинамического сопротивления на выхлопе вследствие установки котла-утилизатора;

- издержки, связанные с эксплуатацией ПТУ (в том числе КУ) в составе ПГУ (р./год);

- изменение прочих издержек (р./год):

(2)

Где

- прочие издержки, связанные с работой ПГУ;

- прочие издержки, связанные с работой ГТЭС до реконструкции (р./год).

Следует отметить, что в формуле (1) принято, что режим работы ГТУ в составе ПГУ остается неизменным, т.е. издержки, связанные с эксплуатацией газотурбинной установки в составе ПГУ, остаются неизменными по сравнению с исходным вариантом ГТЭС.

Оценка суммарных капиталовложений в реконструкцию Ингушской ГТЭС выполнена на основе данных, представленных производителями оборудования, экспертных оценок и проектов-аналогов. При этом принимались во внимание только затраты, связанные с вводом в действие нового оборудования. На рассматриваемой ГТЭС изначально предусматривалась утилизация уходящих газов ГТУ в газовых подогревателях сетевой воды. При размещении паровых котлов-утилизаторов возможно использование ряда ранее принятых строительных и технических решений. Капитальные вложения в осуществление технического перевооружения для рассматриваемых вариантов (с учетом НДС) представлены в табл. 2.

Оценка капитальных вложений для варианта с использованием вновь разрабатываемого паротурбинного оборудования для работы в составе дубль- энергоблока ПГУ (вариант 2) проводилась на базе данных о стоимости установки К-6-1,6У. При этом учитывалось, что цена проектных и конструкторских работ по созданию новой ПТУ составляет ориентировочно 10% от ее цены и распространяется только на первый экземпляр. Поэтому возможно некоторое увеличение удельных капитальных вложений по сравнению с вариантом 1. Однако в данном случае не учитывался эффект снижения стоимости вследствие укрупнения единичной мощности паротурбинного оборудования и уменьшения количества вспомогательных агрегатов, что в конечном итоге способствует сокращению удельных капитальных вложений для варианта 2. Увеличение стоимости реконструкции для варианта 3 объясняется дополнительными капитальными вложениями в блоки дожигающих устройств. Определение эффективности инвестиций в реконструкцию газотурбинной ТЭС проводилось в соответствии с «Методическими рекомендациями по оценке эффективности инвестиционных проектов» с учетом представленных выше особенностей. В качестве основных критериев приняты срок окупаемости (возврата капитала — РВ или DPB) и интегральные показатели:

■ индекс прибыльности (доходности) — PI;

■ внутренняя норма рентабельности (доходности) — IRR.

Анализ коммерческой эффективности реконструкции выполнен с использованием компьютерной программы «Project Expert 7.O3», разработанной компанией «Про-Инвест-ИТ».

Все виды интегральных результатов и затрат выражались и сопоставлялись в дисконтированной форме. Ставка дисконтирования принята равной 10%. Расчеты выполнены в ценах по состоянию на 1-й квартал 2001 г. с учетом платежей в бюджетные и внебюджетные фонды и с учетом НДС. Продолжительность реконструкции, включая проектирование и пусконаладочные работы, - 18 месяцев. Основные исходные данные, принятые при расчетах эффективности инвестиционного проекта, приведены в табл. 2. В расчетах были заданы переменные значения уровня инфляции с тенденцией снижения годовых темпов инфляции — после 2004 г. годовой уровень инфляции принят постоянным и равным 10%.

При расчете учитывались следующие издержки, связанные с эксплуатацией вновь устанавливаемого оборудования ПГУ-КЭС:

■ топливо на технологические цели (в камеры дожигания котлов-утилизаторов);

■ вода на технологические цели (подпитка контуров котлов-утилизаторов и контура оборотного водоснабжения);

■ заработная плата персонала (дополнительный штат, связанный с вводом нового оборудования);

■ расходы на содержание и эксплуатацию оборудования ;

■ ремонт основного оборудования.

Нормы амортизационных отчислений по всем активам (оборудование, здания и сооружения, другие активы) приняты в соответствии с «Классификацией основных средств, включаемых в амортизационные группы» от 1 января 2002 г.

Затраты на все виды ремонтных работ для паросилового оборудования приняты на базе проектов аналогов из расчета $4 МВт»ч выработанной электроэнергии.

Основные интегральные показатели эффективности инвестиционного проекта, определенные без учета схемы финансирования, приведены в табл. 3.

Анализ полученных результатов указывает на экономическую эффективность проекта реконструкции для всех рассматриваемых вариантов. Показателем эффективности является тот факт, что срок окупаемости меньше принятого для расчета (15 лет) и внутренняя норма рентабельности превышает принятую ставку дисконтирования. Учитывая, что инвестирование в энергетику в современных условиях характеризуется достаточно продолжительными сроками окупаемости, полученные абсолютные значения DPB (с начала проекта 10,3-12,7 лет) могут быть привлекательными для потенциального инвестора.

Сравнение результатов, полученных для вариантов 1 и 2, демонстрирует экономическую эффективность перехода к оптимальным начальным параметрам пара ПГУ-КЭС. Это проявляется в снижении дисконтированного срока окупаемости DPB практически на один год и увеличении внутренней нормы доходности проекта на 0,92% (абс). Как отмечено выше, капитальные вложения, принятые для варианта 2, в действительности могут быть снижены за счет увеличения единичной мощности паротурбинного оборудования и уменьшения количества вспомогательного оборудования — в этом случае возможно повышение экономической эффективности.

Несмотря на некоторое снижение показателей тепловой экономичности при дожигании топлива в схеме ПГУ-КЭС (табл. 1), вариант 3 при указанных условиях расчета обладает наибольшей экономической эффективностью (табл. 3). Это связано с тем, что рассматривается не ПГУ в целом, а только вновь сооружаемая часть и все, что с ней связано. И если при дожигании производство электроэнергии (нетто) для ПГУ-КЭС в целом увеличивается примерно на 10% (табл. 1, вар. 1 и 3), то с точки зрения паротурбинной «пристройки» прирост годового отпуска электрической энергии для варианта 3 составляет на 48,7% больше, чем в варианте 1 (табл. 2). Именно этот прирост определяет экономическую эффективность варианта реконструкции и при определенном соотношении цены топлива и тарифа на электроэнергию вызывает более интенсивный приток наличных средств. В итоге, несмотря на увеличенные капитальные вложения и дополнительные затраты на дожигаемое топливо (табл. 2), данный вариант имеет лучшие экономические показатели. В зависимости от ситуации на рынке выходные показатели эффективности инвестиционного проекта могут существенно изменяться. Был проведен анализ изменения эффективности в зависимости от тарифов на отпущенную электроэнергию, при этом в качестве основного критерия был принят дисконтированный срок окупаемости (ВРВ) с начала реализации проекта (рис. 2). Из анализа результатов видно, что изменение тарифа на электроэнергию достаточно интенсивно влияет на величину ВРВ. Так, рост текущих тарифов на 30% приведет к уменьшению дисконтированного срока окупаемости на 32-37 мес. (большая величина соответствует варианту 1). Одним из важнейших параметров, определяющих экономическую эффективность проектов создания и реконструкции энергетических объектов, является цена топлива. Особенность рассматриваемой реконструкции заключается в том, что для вариантов 1 и 2, вследствие использования для выработки дополнительной электроэнергии только утилизируемого тепла газов ГТУ, топливная составляющая затрат отсутствует. Поэтому экономическая эффективность данных вариантов не зависит от цены топлива. При рассмотрении эксплуатационных затрат, связанных с работой вновь сооружаемой (надстраиваемой) части ПГУ, для варианта З топливная компонента составляет около 26,5%. Было исследовано, как влияет изменение тарифа на электроэнергию и цены топлива (природного газа) на дисконтированный срок окупаемости. Результаты показали, что изменение тарифов на электроэнергию имеет более существенное значение, чем на топливо. Так, рост цены на отпускаемую электроэнергию на 30% при одновременном увеличении стоимости природного газа на 75% снизит срок окупаемости на 26 месяцев. Это объясняется, прежде всего, малой величиной топливной составляющей в составе общих издержек эксплуатации, а также относительно низкой ценой природного газа на внутреннем рынке.

ВЫВОДЫ: • создание парогазовых установок на базе ГГУ малой и средней мощности — достаточно эффективный способ производства электроэнергии. Все предложенные варианты реконструкции ГТЭС являются экономически эффективными с точки зрения полученных сроков окупаемости и интегральных показателей; • выбор оптимальных начальных параметров паротурбинной части ПГУ экономически оправдан; • при имеющемся на данный момент уровне соотношения цены природного газа и тарифа на электроэнергию использование дополнительного сжигания топлива в схемах ПГУ-КЭС может быть экономически оправдано.

 

Экономическая целесообразность форсированного внедрения ПТУ и ГТУ при обновлении тепловых электростанций

 

Наибольшего снижения удельных расходов топлива при обновлении ТЭС можно достичь за счет внедрения прогрессивных технологий производства электроэнергии: для ТЭС на газе - это парогазовый цикл, газотурбинные надстройки паросиловых блоков и газовые турбины с утилизацией тепла; для ТЭС на угле - экологически чистые технологии его сжигания в паротурбинном цикле.

Е. Волкова, Т. Новикова, В. Шульгина - ИНЭИ РАН

Старение оборудования электростанций и связанная с этим необходимость полной или частичной его замены -одна из основных проблем развития электроэнергетики в ближайшие годы. Обновление позволяет не только сохранить и даже несколько увеличить мощность действующих станций, но также повысить эффективность использования органического топлива.

В настоящее время инвестиции в разработку новых типов оборудования ограничены, поэтому предлагаются менее капиталоемкие способы обновления — восстановление ресурса и модернизация оборудования на действующих электростанциях.

В рамках работы над «Концепцией технического перевооружения...» ИНЭИ РАН провел экономический анализ трех предлагаемых в настоящее время способов обновления устаревшего оборудования ТЭС: восстановление ресурса, установка модернизированного оборудования и внедрение новой техники. Сравнение проводилось для типовых групп (так называемых «технологий»), классифицированных по принципу относительной близости технико-экономических показателей - тип блока (ТЭЦ или КЭС), начальные параметры пара и вид используемого топлива (табл. 1).

Таким образом, в одну группу попали, например, конденсационные энергоблоки разной единичной мощности с начальным давлением пара 240 ата.

При первом способе обновления — восстановлении ресурса -мощность оборудования не меняется. При замене этих блоков модернизированными происходит некоторое увеличение их мощности (например, К-330-240 и К-850-240 вместо К-300-240 и К-800-240). При замене старого оборудования прогрессивным на действующих площадках устанавливаются ПГУ примерно такой же мощности (например, ПГУ-325 вместо К-300-240). Для всех типовых групп были приняты укрупненные технико-экономические показатели, прогнозируемые для каждого способа обновления. Ранжирование «технологий» по минимуму удельных приведенных затрат позволило выбрать наиболее эффективные способы обновления: для ТЭС на угле — это установка модернизированного оборудования, для ТЭС на газе — замена паротурбинных блоков парогазовыми установками и ГТУ с котлами-утилизаторами. В рамках «Программы обновления ТЭС...» ИНЭИ РАН определил коммерческую эффективность трех вариантов обновления конкретных тепловых электростанций в период до 2010 года. Варианты были разработаны институтом «Теплоэлектропроект» с учетом динамики выбытия оборудования в результате старения и на основе рекомендованных выше способов обновления для каждой типовой группы. По существу, проводилось сравнение двух путей обновления ТЭС. Один из них - малозатратный, но в то же время топливоемкий, технически отсталый путь, связанный с восстановлением ресурса оборудования. Другой — прогрессивный, обеспечивающий снижение потребности в топливе, но капиталоемкий, требующий внедрения модернизированной и новой техники. Вариант 1 представляет собой реализацию первого пути. т.е. оборудование всех ТЭС. по мере достижения турбинами индивидуального ресурса подлежит восстановлению (табл. 2).

Информация о работе Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии