Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии

Автор работы: Пользователь скрыл имя, 06 Мая 2015 в 00:41, курсовая работа

Краткое описание

В промышленности электрическая энергия из тепловой получается путем промежуточного преобразования её в механическую работу. Превращение тепла в электричество с достаточно высоким кпд без промежуточного преобразования его в механическую работу было бы крупным шагом вперёд. Тогда отпала бы надобность в тепловых электростанциях, использовании на них тепловых двигателей, которые имеют относительно низкий кпд, весьма сложны и требуют довольно квалифицированного ухода при эксплуатации.

Содержание

Введение
Парогазовые установки
Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии
Экономическая целесообразность форсированного внедрения ПТУ и ГТУ при обновлении тепловых электростанций
Комплексный подход к строительству и реконструкции электростанций с применением ПУ и ПГУ
Отработка технических решений на собственных электростанциях – залог надежной работы оборудования у заказчика
Конденсационная парогазовая электростанция для надежного энергоснабжения промышленных потребителей
Реконструкция паротурбинных электростанций - эффективный путь перевооружения энергетики
Опыт эксплуатации газопаротурбинной установки ГПУ-16К с впрыском пара Теплофикационные парогазовые установки для замены устаревшего оборудования ТЭЦ ОАО «Ленэнерго»
Повышение эксплуатационных характеристик энергетических установок
Сравнение паросилового блока с Т-265 и энергоблока с двумя ПГУ-170Т
Масштабы внедрения ПГУ и ГТУ в среднесрочной перспективе

Прикрепленные файлы: 1 файл

Парогазовые установки.doc

— 509.00 Кб (Скачать документ)

 

Для увеличения выработки тепла в периоды максимальных нагрузок применяются котлы-утилизаторы ГТУ, оснащенные горелками для сжигания дополнительного топлива. Однако сжигание топлива перед котлами-утилизаторами, как и снижение тепловой нагрузки (недоиспользование тепла отработавших в ГТУ газов), уменьшает эффективность ГТУ-ТЭЦ, которые наиболее привлекательны для промышленных ТЭЦ со значительной долей стабильной паровой нагрузки. Экономически они выгодны и при резко переменном графике тепловой и электрической нагрузки: в качестве примера можно назвать Якутскую ГРЭС (в сущности ТЭЦ) с восьмью ГТУ общей мощностью около 250 МВт, которая успешно эксплуатируется с 1971 г.

2. ПГУ-ТЭЦ бинарного цикла. Каждая ГТУ работает на свой котел-утилизатор, в котором генерируется и перегревается пар, поступающий, например, в общий коллектор, а из него - в имеющиеся паровые турбины. Первой теплофикационной ПГУ бинарного типа в России является ПГУ-450 на Северо-Западной ТЭЦ в Санкт-Петербурге, эксплуатирующаяся сейчас без тепловой нагрузки. Ее схема позволяет в широких пределах изменять соотношение между электрической и тепловой нагрузкой, сохраняя общий высокий коэффициент использования тепла топлива.  Отработанный на Северо-Западной ТЭЦ модуль ГТУ - котел-утилизатор, генерирующий 240 т/ч пара высокого давления при электрической мощности 150 МВт, может прямо использоваться для питания турбин ПТ-60, ПТ-80 и Т-100 на действующих ТЭЦ. При полной загрузке их выхлопов расход пара через первые ступени этих турбин будет значительно ниже номинального. Его можно будет пропустить при характерных для ПГУ-450 пониженных давлениях пара. Это и одновременное уменьшение температуры свежего пара до 500-510 °С летом и даже несколько более низких значений зимой снимет вопрос об исчерпании ресурса таких турбин. Конечно, мощность паровых турбин в составе ПГУ будет, как показано в табл. 2, ниже номинальной, но общая мощность блока при этом возрастет более чем вдвое, а его экономичность по выработке электроэнергии не будет зависеть от режима и станет существенно более высокой, чем у лучших конденсационных энергоблоков.

 

Показатель

Т-100

ПГУ с Т-100

ПТ-80

ПГУ с ПТ-80

конден-сацион-ный

комби-ниро-ванный

конден-сацион-ный

комби-ниро-ванный

конден-сацион-ный

комби-ниро-ванный

конден-сацион-ный

комби-ниро-ванный

Мощность паровой турбины, МВт

100

100

76,8

66,5

82,2

67,9

74,7

58,3

Мощность ГТУ, МВт

-

-

151,2

151,2

-

-

151,2

151,2

Суммарная мощность, МВт

100

100

228

217,7

82,2

67,9

225,9

209,5

Выработка тепла, МВт

-

151

-

160

-

128

-

160

Доля тепла, преобразованная в электроэнергию (КПД), %

35,2

30,4

49,5

47,3

34,5

28,5

49,0

45,5

Коэффициент использования тепла топлива, %

35,2

83,6

49,5

83

34,5

82,1

49,0

82

Доля электроэнергии в выработанной энергии (электроэнергия + тепло)

1

0,36

1

0,58

1

0,35

1

0,57


 

Такое изменение показателей радикально влияет на экономичность ТЭЦ. Суммарные издержки на выработку электроэнергии и тепла в них снизятся, а конкурентоспособность на рынках электроэнергии и тепла возрастет.  ГТУ с котлами-утилизаторами лучше всего располагать в новом главном корпусе на площадке действующей ТЭЦ. Старые котлы могут сохраняться в резерве для покрытия пиковых нагрузок или на случай перерывов в газоснабжении.   Газотурбинные установки мощностью 15-30 МВт и ниже целесообразно применять для децентрализованных источников электроэнергии и тепла, реконструкции отопительных и производственных котельных с превращением их в небольшие ГТУ-ТЭЦ, а иногда и создания ПГУ-ТЭЦ (например, на базе промышленных ТЭЦ с паровыми турбинами мощностью 6-12 МВт).  ГТУ такого класса мощности удобны для сохранения выработки электроэнергии на старых ТЭЦ с низкими (3-9 МПа) давлениями пара. На них целесообразна установка четырех-шести ГТУ мощностью 15-30 МВт с котлами-утилизаторами и использованием выработанного в них пара в имеющихся турбинах (если они работоспособны) или в новой паровой турбине. Невысокие параметры пара не являются в этом случае большим недостатком. Таким образом, создается экономичная современная ТЭЦ с электрической мощностью 80-200 МВт и тепловой мощностью 100-200 Гкал/ч. Остальная часть тепловой нагрузки покрывается в режиме котельной.  Существует множество различных сочетаний газотурбинных и паровых циклов. Некоторые из них время от времени реализуются. Например, на электростанциях со значительным остаточным ресурсом энергоблоков, в топливном балансе которых велика доля мазута или угля, но имеется и природный газ в количестве, достаточном для питания ГТУ, возможны газотурбинные надстройки с использованием тепла отработавших в ГТУ газов в основном паровом цикле. При надстройке энергоблоков мощностью 300 МВт установкой ГТЭ-110 по схеме со сбросом отработавших газов в топку котла мощность станции может быть увеличена в ~1,5 раза, а КПД повышен до 44-46%. Газотурбинные надстройки блоков мощностью 800 МВт в зависимости от схемы и показателей применяемых ГТУ (две ГТЭ-160 или ГТЭ-180) позволяют повысить мощность на 30-35% и снизить удельный расход тепла на 8-14%.  Подобные надстройки целесообразны для новых газовых ТЭС (Печорской, Псковской) или газо-угольных (если они появятся) с энергоблоками мощностью 200 МВт. Для них оптимальны ГТУ с расходом газа 200-250 кг/с и мощностью 60-75 МВт. КПД надстроенного блока при работе на природном газе составит 40-44%.  Для того чтобы газотурбинные и парогазовые установки смогли сыграть важную роль в повышении эффективности электроэнергетики и тем самым способствовали развитию национальной экономики России, нужна согласованная программа действий, реализация которой будет опираться на федеральные и местные ресурсы, ресурсы банков и энергокомпаний (РАО <ЕЭС России>, Газпром), потребляющие отрасли промышленности, энерго- и авиа- машиностроение. 

Масштабы применения ГТУ разных типоразмеров в ГТУ-ТЭЦ, газотурбинных надстройках и в составе высокоэкономичных парогазовых установок при техническом перевооружении тепловых электростанций по оценкам проектных организаций РАО <ЕЭС России> в 2002-2015 гг. могут составить: по газотурбинным установкам 20-30 МВт - 57 шт., 60-80 МВт - 147 шт., 110 МВт - 146 шт., 160-180 МВт и более - 59 шт. Их общая мощность оценена в ~40 млн кВт. Приведенные цифры следует рассматривать как минимальные, поскольку они определены в условиях отсутствия собственно ГТУ, а тем более положительного опыта их применения и реальных источников инвестиций.

Только на ТЭЦ мощностью более 200 МВт (эл.), в топливном балансе которых природный газ занимает 90% или более, эксплуатируется около 300 паровых турбин мощностью 60-110 МВт, которые целесообразно заменить газовыми. Наибольшую выгоду можно получить, если такая замена будет проведена с увеличением электрической мощности ТЭЦ (при постоянной тепловой нагрузке оптимальным будет увеличение мощности в 2-2,5 раза).

Если, например, на базе всех имеющихся на городских ТЭЦ Мосэнерго турбин ПТ-80 и Т-100 создать рассмотренные выше ПГУ, потребуется установить около 50 ГТУ общей мощностью 7,3 млн кВт. Электрическая мощность ТЭЦ увеличится на 5,7 млн кВт, а тепловая - всего на 720 Гкал/ч. Конечно, такое тотальное техперевооружение вряд ли возможно из-за трудностей, связанных с необходимостью вывода увеличенной мощности и обеспечения надежной круглогодичной подачи природного газа (или наличия резерва в виде дизельного топлива), а также с решением в проектах технических задач с минимальными капиталовложениями.   Для удовлетворения потребностей отечественной электроэнергетики в ближайшие годы необходимо:

· освоить в производстве и эксплуатации экономичные энергетические газотурбинные установки мощностью до 35 МВт, 60-80 МВт, 110 и 180 МВт;

· спроектировать, соорудить и ввести в действие конденсационные и теплофикационные парогазвые установки мощностью 80-540 МВт, газотурбинные ТЭЦ и надстройки на действующих электростанциях;

· выполнить обосновывающие исследования и отработать конструкции критических узлов ГТУ для проектирования перспективного газотурбинного агрегата мощностью 250-300 МВт. Разработка и внедрение отечественных высокоэкономичных высокотемпературных газовых турбин мощностью 25-180 МВт и парогазовых установок мощностью 80-540 МВт, которые по своим техническим характеристикам будут на уровне зарубежных, создадут техническую и производственную базу для коренной структурной перестройки электроэнергетики России. Достижение успеха здесь возможно только при условии конверсии и использования богатого опыта и научно-технического потенциала авиационной промышленности.  Разумеется, для обоснования разработок необходимы научные исследования. Чтобы осуществить серьезные проекты, потребуется объединение ресурсов поставщиков и потребителей, а также поддержка со стороны государства.  Применение газотурбинных и парогазовых установок будет наиболее успешным при круглогодично устойчивом газоснабжении и подаче на электростанции газа полного (3-4 МПа) давления. Технически это вполне реально. Проектные проработки свидетельствуют о возможности привязки к существующей сети газопроводов действующих ТЭС мощностью 30-40 млн кВт ГТУ без сложных дополнительных работ по газоснабжению. Их внедрение позволит в 1,5-2 раза снизить издержки производства электроэнергии и тепла.

 

Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии

 

При выборе способа технического перевооружения ГТЭС необходим глубокий детальный анализ технических возможностей модернизируемого объекта - с учетом конкретных условий проведения работ, схемы финансирования и т.д. В статье представлены результаты исследования экономической эффективности технического перевооружения энергообъекта с использованием парогазовых технологий на примере реконструкции Ингушской ГТЭС.

A. Виноградов, А. Григорьев, В. Макаревич - ЗАО «МР-Энерго-Строй»

B. Буров, В. Торжков - Московский  энергетический институт (ТУ)

Ингушская ГТЭС (проект ЦПЭ АО РОСЭП, генеральный подрядчик ЗАО «МР-Энерго»), изначально предназначенная для комплексной выработки электрической и тепловой энергии, состоит из четырех газотурбинных установок типа ГТГ-15 производства НПКГ «Зоря»-«Машпроект». Компоновка основного оборудования ГТЭС — размещение энергоустановок в двух модулях, в каждом по две ГТУ.

Выработка тепловой энергии на внешнее потребление в виде горячей воды должна была осуществляться за счет утилизации тепла выхлопных газов газотурбинных двигателей, для чего предусмотрены водогрейные котлы-утилизаторы (газовые подогреватели сетевой воды).

Вследствие резкого снижения потребности в тепловой энергии и низкой эффективности использования топлива при работе ГТУ по простому циклу (кпд по выработке электроэнергии брутто при стандартных условиях ISO составляет 31%), МР-Энерго-Строй и МЭИ провели исследования по повышению тепловой экономичности Ингушской ГТЭС. Одним из основных вариантов является создание на базе ГТЭС парогазовой электростанции.

На первом этапе техническое перевооружение предполагается провести на двух установленных газотурбинных агрегатах. Наиболее предпочтительно использование парогазовой установки с котлом-утилизатором одного давления (рис. 1).

Принципиальная тепловая схема ПГУ-КЭС с котлом-утилизатором одного давления:

1-газотурбинная установка

2-котел-утилизатор (ПЕ, И, ЭК- соответственно пароперегреватель, испарительная система и экономайзерная поверхности нагрева КУ; ГПК- газовый подогреватель конденсата)

3-провая турбина

4-деаэратор питательной воды

5-кондесатор

6-питательный насос

7-конденсатный насос

8-насос рециркуляции

Такие ПГУ характеризуются достаточно простой тепловой схемой, компактны, что особенно важно при реконструкции ГТУ малой и средней мощности.

Выбранный вариант тепловой схемы ИГУ предусматривает установку паровой турбины с конденсацией пара. Основным критерием при выборе параметров пара и мощности паровой турбины является располагаемый теплоперепад выхлопных газов ГТУ, а также характер его изменения в течение года в зависимости от температуры наружного воздуха.

Существуют два основных подхода к надстройке газотурбинного оборудования паросиловыми блоками: применение типового и использование вновь разрабатываемого паротурбинного оборудования с наиболее оптимальными для заданного типа ГТУ начальными параметрами пара. Рассмотрены следующие варианты:

1.Создание двух парогазовых энергоблоков на базе серийно выпускаемого оборудования. В качестве типовой была выбрана паротурбинная установка конденсационного типа К-6-1,6У производства Калужского турбинного завода. Номинальная электрическая мощность данного агрегата б МВт (начальные параметры пара 1,57 МПа/320°С, давление пара за турбиной — 9,8 кПа). Тепловая схема каждого из двух блоков представлена на рис. 1. Следует отметить, что в заводской комплектации в состав данной ПГУ включен подогреватель низкого давления (ПНД) для подогрева основного конденсата перед деаэратором атмосферного типа. В схеме ПГУ эту функцию выполняет газовый подогреватель конденсата.

2. Создание на базе  двух ГТУ парогазового дубль-блока.

За счет утилизации части тепла уходящих газов в КУ генерируется перегретый пар. Он поступает в общий коллектор и далее в проточную часть паровой турбины для выработки электроэнергии. В остальном тепловая схема конденсационного парогазового дубль- блока аналогична представленной на рис. 1. Выбор такого варианта обусловлен, прежде всего, возможностью размещения основного оборудования ПГУ в рамках существующих компоновочных решений проекта Ингушской ГТЭС. При реализации данной схемы появляется возможность более компактного размещения паротурбинного оборудования во вновь сооружаемом машинном зале, сокращается количество вспомогательного оборудования и т.д.

Как показывают результаты ранее выполненных исследований, начальные параметры пара указанной типовой паротурбинной установки не являются оптимальными с точки зрения тепловой экономичности ПГУ на базе ГТУ типа ГТГ-15. В связи с этим для них были получены оптимальные начальные параметры пара, генерируемого в котле-утилизаторе (КУ). Температурный напор на входе в пароперегреватель КУ а также давление в конденсаторе паротурбинных установок приняты равными варианту с турбиной К-6-1,6У. Таким образом, для схемы дубль- блока параметры пара, генерируемого в КУ, составили: Рпе=0,9 МПа, tпе=325°C. Электрическая мощность такой паровой турбины при работе в составе дубль-блока ПГУ с учетом изменения характеристик выхлопных газов ГТУ (в зависимости от температуры наружного воздуха) составит около 10 МВт.

Информация о работе Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии