Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии

Автор работы: Пользователь скрыл имя, 06 Мая 2015 в 00:41, курсовая работа

Краткое описание

В промышленности электрическая энергия из тепловой получается путем промежуточного преобразования её в механическую работу. Превращение тепла в электричество с достаточно высоким кпд без промежуточного преобразования его в механическую работу было бы крупным шагом вперёд. Тогда отпала бы надобность в тепловых электростанциях, использовании на них тепловых двигателей, которые имеют относительно низкий кпд, весьма сложны и требуют довольно квалифицированного ухода при эксплуатации.

Содержание

Введение
Парогазовые установки
Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии
Экономическая целесообразность форсированного внедрения ПТУ и ГТУ при обновлении тепловых электростанций
Комплексный подход к строительству и реконструкции электростанций с применением ПУ и ПГУ
Отработка технических решений на собственных электростанциях – залог надежной работы оборудования у заказчика
Конденсационная парогазовая электростанция для надежного энергоснабжения промышленных потребителей
Реконструкция паротурбинных электростанций - эффективный путь перевооружения энергетики
Опыт эксплуатации газопаротурбинной установки ГПУ-16К с впрыском пара Теплофикационные парогазовые установки для замены устаревшего оборудования ТЭЦ ОАО «Ленэнерго»
Повышение эксплуатационных характеристик энергетических установок
Сравнение паросилового блока с Т-265 и энергоблока с двумя ПГУ-170Т
Масштабы внедрения ПГУ и ГТУ в среднесрочной перспективе

Прикрепленные файлы: 1 файл

Парогазовые установки.doc

— 509.00 Кб (Скачать документ)

Подобная концепция была разработана Масленниковым и Штерепбергом. Согласно ей, выхлоп обыкновенного газогенератора направляется сначала в реактор ЧО, проходит через силовую турбину и затем используется в топочной камере котла. Рост кпд при данной схеме достигает 80% (расчет проводился из условия отношения увеличения вырабатываемой энергии к увеличению потребляемого топлива).

Был произведен анализ эксергии для газовых турбин с регенератором ЧО, эксплуатируемых при максимальной температуре 1400°С и давлении 40 бар с политропическим кпд компрессора 90% и кпд турбины 88%. Было принято, что метан подводится из газопровода с требуемым давлением. Как видно из диаграммы Грассмана (рис. 6), общий эксергический кпд газовой турбины с реактором ЧО составил 85,6%. При этом 13,5% мощности снимается с турбины ГТУ, а 72,1% -эксергия синтетического газа, состоящая из химической (68,1%) и термической эксергии (4%).

В данной схеме химический компонент утилизируется в паротурбинной установке в качестве топлива с тем же самым эксергическим кпд, как и при других схемах. Установленный кпд по эксергии составляет 38,5% (кпд LHV - 40%), мощность, снимаемая паротурбинной установкой, — 26,23%. В противоположность этому при обычной схеме тепловой компонент синтетического газа увеличивает мощность, подводимую в паровой цикл. По расчетам Болланда, для котлов-утилизаторов кпд по эксергии парового цикла изменяется в зависимости от его сложности: 65% - с двумя уровнями давления пара, 70% — с тремя уровнями давления и промежуточным перегревом пара.

Если принять за основу значение 62%, то при использовании теплового компонента вырабатывается дополнительное количество энергии (2,48%). В сумме общий кпд парового цикла по эксергии составит 42,21%, то есть на 3,7% больше, чем при обычной схеме (42,21% против 38,5%). Еще заметнее увеличивается количество вырабатываемой энергии — 26,23% при обычной схеме и 42,21% при схеме с частичным окислением. Увеличение составляет 60 %.

Таким образом, расчеты показывают, что данная схема модернизации является очень эффективной.

Комбинированный цикл с внешним горением

Схемы, рассмотренные выше, были основаны на использовании газовых турбин, которые работают на высококачественном топливе - природном газе или дистилляте. В противоположность этому при комбинированном цикле с внешним горением газовая турбина входит в состав установки, работающей на угле. Она интегрирована таким образом, что дополнительное тепло создается косвенно, с помощью воздухонагревателя, расположенного в топочной камере. Такое расположение позволяет избежать попадания продуктов сгорания угля в турбину, использовать высокотемпературную зону горения, а также произвести пар, необходимый для парового цикла. После подогрева в топочной камере сжатый воздух расширяется в турбине и направляется обратно в топку в качестве подогретого воздуха для сжигания в нем газифицированного угля (рис. 7). Часть этого воздуха может быть направлена в котел-утилизатор (HRSG), который работает параллельно с паровым котлом. При такой схеме продукты сгорания угля не попадают в газовую турбину -это позволяет избежать необходимости очистки горячего газа, а также коррозии турбинных лопаток.

Для нагревания воздуха в теплообменнике до рабочих температур, равных температурам в традиционных ГТУ на входе в турбину, необходимы специальные материалы с высокой термостойкостью. Так как жаропрочные сплавы не могут быть использованы при температуре выше 950...1000°С, требуется применение керамических материалов. На окончательном этапе нужная температура может быть достигнута сжиганием природного газа в камере сгорания.

В работах Коробицына и Хирса рассмотрен эффект форсированного горения в области воздухонагревателя и использование менее ценных материалов. Рассмотрены варианты использования металлических теплообменников (800°С), оксидных дисперсионных сплавов (980°С) и керамических материалов (1165°С). Последний вариант рассматривался только при применении угля в качестве топлива. Все расчеты проводились для турбины V94.2 компании Siemens. Форсированное горение использовалось для получения необходимой температуры на входе в турбину.

Были получены следующие значения кпд (LHV):

■ для комбинированного цикла при работе только на природном газе — 50,1%;

■ для установок с металлическим воздухонагревателем — 47,7%;

■ для комбинированного цикла с внешним горением с использованием керамических материалов -45,6%;

■ для установок с прямым горением - 34,8%.

На рис. 8 приведено сравнение между потреблением газа при параллельном сжигании и использовании дополнительных поверхностей воздухонагревателя. Таким образом, для получения 1 кВт электрической энергии (из соответствующего количества природного газа), выработанной в комбинированном цикле с внешним горением, потребуются теплообменники:

■ при температуре в цикле 800°С из суперсплавов с площадью

поверхности 35 м2;

■ при температуре 1165°С — из керамических материалов с площадью 65 м2.

 

Заключение

 

Возможны несколько путей модернизации установок прямого горения с использованием газотурбинных технологий. Например, выхлоп газовой турбины может быть использован в установке по утилизации мусора для повышения

температуры производимого пара. В схеме с горячим наддувом внешний перегрев пара обеспечивает оптимальное соотношение между потреблением газа и общей площадью поверхности теплообменника.

Расширение природного газа (с давления в газопроводе до атмосферного) в газовой турбине, в состав которой входит реактор частичного окисления, дает возможность получить синтетический газ. Использование этого газа в топочной камере паротурбинной установки позволяет реализовать очень перспективную схему модернизации.

Замена части трубной обвязки парового котла на воздухонагреватель для газовой турбины улучшает термодинамические показатели паротурбинной установки, увеличивая кпд и количество производимой энергии. При этом повышение эксплуатационных характеристик энергетических установок, работающих на твердом топливе, с использованием газотурбинных технологий не требует чрезмерного расхода природного газа и применения большого количества тепло-обменных поверхностей. Следует отметить, что при всех схемах модернизации требуется дополнительная площадь для установки газовой турбины и вспомогательного оборудования.

 

Сравнение паросилового блока с Т-265 и энергоблока с двумя ПГУ-170Т

 

В статье представлено сравнение характеристик при двух вариантах строительства энергоблока № 3 ТЭЦ-27 ОАО «Мосэнерго» - паросилового на базе турбины Т-265 и энергоблока, состоящего из двух парогазовых установок ПГУ-170Т.

И. Долинин, А. Иванов - ОАО «Мосэнерго»

В настоящее время основу отечественной энергетики составляют паротурбинные установки тепловых электростанций. Однако мировой опыт развития энергетики за последние 20 лет показывает, что традиционные паротурбинные установки вытесняются парогазовыми, которые имеют значительно лучшие технические, экономические и эксплуатационные характеристики. Особенно это относится к новому строительству. Газовая турбина ГТД-110 создает предпосылки для переориентации на парогазовые технологии.

ТЭЦ-27 предназначена для обеспечения теплом и электроэнергией северных районов гг. Москвы и Мытищи и выдачи электрической энергии в сеть Мосэнерго.

В соответствии с утвержденным проектом в состав оборудования ТЭЦ-27 должны входить:

■ два энергоблока с турбиной ПТ-80;

■ три энергоблока с турбинами Т-265;

■ девять водогрейных котлов КВГМ-180.

Сейчас в работе находятся два энергоблока по 80 МВт и четыре водогрейных котла.

В связи с особенностью топливного режима ТЭЦ-27 (она уже имеет два независимых источника газоснабжения), а также складывающимся дефицитом тепловой и электрической энергии, представляется необходимым рассмотреть возможность применения парогазовых технологий при дальнейшем расширении ТЭЦ как альтернативу паросиловым блокам с турбинами Т-265.

Для сравнения вариантов предполагается:

1. Вместо паросилового блока использовать парогазовый. Он должен состоять из двух одновальных парогазотурбинных установок ПГУ-170Т с водогрейным котлом КВГМ-180 для выравнивания тепловой мощности.

Исходные данные для расчета эффективности инвестиций по двум вариантам строительства энергоблока № 3 ТЭЦ-27

 

Таблица 1

Наименование

Варианты строительства

   

Т-265

две ПГУ-170+ ВК6

1

Состав оборудования совместного предприятия

   
 

существующее/вновь вводимое

ВК4.5Д-265

ВК4.5/две ПГУ-170, ВК6

2

Объем капитальных вложений, $ млн

130

150

3

Стоимость ВК4,5 и вспомогательных зданий и сооружений, входящих в

   
 

Состав технологического комплекса,

   
 

$ млн (оценочно)

20

20

4

Ввод в эксплуатацию

01.06.2004

ВК6-31.12.03

     

ПГУ№1 -31.12.03

     

ПГУ №2-01.06.04

5

Финансирование строительства, $ млн

   
 

а) за счет собственных средств предприятия

   
 

(20% от капвложений)

26

30

 

б) за счет кредитов

104

118

 

в) за счет прибыли

 

2

 

Исходные данные в соответствии с составом оборудования, его характеристиками и режимами работы

6

Отпуск электроэнергии в год,млн кВт*ч

1717

2710

7

Отпуск теплоэнергии в год , тыс.Гкал, в том числе:

2103

2710

 

от Т-265 или 2 ПГУ-170

1833

1275

 

От ПВК

877

1435

8

Годовой расход топлива тыс.тут, в том числе:

797,5

799,4

 

на Т-265 или 2 ПГУ-170

664,3

581,4

 

На ПВК

133,2

218,0

Экономические исходные данные

9

Численность эксплуатационного персонала, чел.

96

94

10

Средняя заработная плата на начало

   
 

эксплуатации на одного человека, $/мес.

350

350

11

Средняя норма амортизации, %

3,5

4,7

12

Производственные издержки (за исключением топлива), $ млн

7,131

7,548

13

Покупка ГТД в 2014 году, $ млн

-

15

 

Покупка ГТД в 2015 году, $ млн

-

15


Примечание. По обоим проектам: начало строительства - 01.01.2002 г., срок проекта - 20лет, ставка дисконтирования для акционерного капитала -20%, ставка по кредитам - 11,2%, отсрочка по выплате процентов - 2%, отсрочка первого платежа по выплате кредитов - 3 года, налоги рассчитаны по 2001 г.

 

Действующие тарифы на тепло и электроэнергию и цена природного газа

 

Таблица 2

Цена природного газа (действующая), руб./тут руб./1000м3

433,7 493,42

Средний отпускной по МЭ тариф на тепловую энергию (действующий), руб./Гкал

194,26


 

2. Работа блока № 3 будет определяться тепловыми и электрическими графиками нагрузок, составленными на основе данных службы режимов Мосэнерго.

3. Для оценки эффективности инвестиций создать на базе энергоблока № 3 независимое генерирующее предприятие типа акционерного общества.

Расчеты были выполнены специалистами ТЭЦ-27 на основе данных Мосэнерго и заводов, предоставивших оборудование. Расчет параметров энергоблока был сделан ОАО «Институт Теплоэлектропроект» в соответствии с «Практическими рекомендациями по оценке эффективности и разработке инвестиционных проектов и бизнес-планов в электроэнергетике», утвержденными приказом РАО «ЕЭС России» № 54 от 7.02.2000 г.

Сравнение эффективности инвестиций производилось с использованием следующих критериев:

■ чистого дисконтированного дохода (ЧДД);

■ внутренней нормы доходности (ВНД);

■ дисконтированного период а окупаемости;

■ индекса доходности (ИД). Расчеты данных показателей

производились с применением программного пакета Project Expert фирмы «Проинвест консалтинг», отвечающего международным стандартам.

Исходные данные для расчетов приведены в табл. 1.

Необходимо обратить внимание на следующее:

■ объем капиталовложений в варианте ПГУ на $ 20 млн больше, чем в паросиловом;

■ в варианте с ПГУ энергетические мощности вводятся в разное время. Первая ПГУ уже работает и дает прибыль, в то время как в варианте с Т-265 еще продолжается строительство;

■ ставка по кредитам принята 11,2%, то есть довольно высокая, и может быть реально снижена при переговорах с кредиторами;

■ в варианте с ПГУ учтено приобретение двух ГТД на замену через 10 лет эксплуатации.

При этом рассмотрены две гипотезы.

1-я гипотеза

Информация о работе Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии