Автор работы: Пользователь скрыл имя, 16 Июня 2013 в 23:00, курсовая работа
Регламент является основным технологическим документом, устанавливающим технологические методы, технологические средства, нормы и нормативы для осуществления процесса производства определенной продукции, обеспечивающим безопасность работ и достижение оптимальных технико-экономических показателей.
В зависимости от стадии разработки продукции, степени освоения ее технологии производства или целей осуществляемых работ технологические регламенты подразделяются на следующие типы:
лабораторные;
опытно-промышленные;
пусковые;
промышленные;
типовые промышленные.
Введение 3
1.Характеристика конечной продукции 4
2. Химическая схема производства 4
3. Технологическая схема производства 5
4. Аппаратурная схема производства и спецификация оборудования 6
5. Характеристика сырья, материалов и полупродуктов 7
5.1. Calcii gluconas 7
5.2. Aqua pro injectionibus 8
6. Изложение технологического процесса 9
6.1. Вспомогательные работы (ВР 1) 9
6.1.1 Вскрытие ампул (ВР 1.1) 9
6.1.2 Мойка ампул (ВР 1.2).………..………………………………………….…….9
6.1.3 Получение и подготовка растворителя (ВР 1.3) 11
6.1.4 Подготовка помещений (ВР 1.4) 13
6.1.5 Подготовка фильтров (ВР 1.5) 14
6.2 Приготовление раствора (ТП 1) 14
6.2.1 Растворение лекарственного вещества (ТП 1.1) 14
6.2.2 Фильтрование раствора (ТП 1.2) 15
6.3 Ампулирование раствора (ТП 2) 15
6.3.1 Наполнение ампул (ТП 2.1) 15
6.3.2 Запайка ампул (ТП 2.2) 16
6.4.Стерилизация (ТП 3) 17
6.4.1 Стерилизация (ТП 3.1) 17
6.5 Контроль качества (ТП 4).............................................................................................17
6.6 Маркировка, упаковка (УМО 1)....................................................................................20
6.6.1 Маркировка (УМО 1.1) 20
6.6.2 Упаковка (УМО 1.2) 20
7. Материальный баланс 20
8.Переработка и обезвреживание некондиционной продукции………………………….24
9. Контроль производства и управление технологическим процессом ……………….... 24
10.Техника безопасности, пожарная безопасность и производственная санитария……..24
11. Охрана окружающей среды……………………………………………………………...24
12.Перечень производственных инструкций……………….………………………………24
13. Технико-экономические нормативы……………………………………………….....…24
14.Информационные материалы…………………………………
Наружная мойка ампул
Кассеты с ампулами помещают в ванну на подставку и душируют деминерализованной водой с температурой 60°С. Во время мойки кассета с ампулами совершает вращательное движение под давлением струй воды, что способствует одинаковой очистке всей наружной поверхности.
Внутренняя мойка ампул
Осуществляется
Получение воды деминерализованной
Деминерализация воды проводится с помощью ионного обмена, основанного на использовании ионитов. Катионит в Н-форме обменивает все катионы, содержащиеся в воде, анионит в ОН-форме - все анионы.
В качестве катионита используется сильнокислотный сульфокатионит КУ-2, ани-онита - сильноосновный АВ-171.
Ионообменная установка состоит из 3 пар катионитных и анионитных колонок. Водопроводная вода поступает в катионитную колонку, проходит через слой катионита, затем анионита, подается на фильтр е размером пор не более 5-10 мкм (для удаления частиц разрушения ионообменных смол), нагревается в теплообменнике до температуры 80-90°С.
Регенерация ионитов
Перед регенерацией иониты взрыхляют обратным током водопроводной воды. Катиониты регенерируют в несколько приемов: 1, 0,7 и 4% растворами кислоты серной. Перед сливом в канализацию кислоту из колонки нейтрализуют мраморной крошкой. Аниониты восстанавливаются в 3 приема: 2,6, 1,6 и 0,8% раствором натрия гидроксида.
После обработки растворами реагентов, колонки промывают водой до заданного значения рН.
Получение воды для инъекций
Вода для инъекционных препаратов получается методом перегонки деминерализованной воды в трехкорпусном аквадистилляторе „Финн-аква". Исходная вода деминерализованная подается через регулятор давления в конденсор-холодильник, проходит теплообменники камер предварительного нагрева - III, II, I корпусов, нагревается и поступает в зону испарения, в которой размещены системы трубок, обогреваемых изнутри греющим паром. Нагретая вода с помощью распределительного устройства направляется на наружную поверхность обогреваемых трубок в виде пленки, стекает по ним вниз и нагревается до кипения.
В испарителе создается интенсивный поток пара, специальными направляющими ему задается спиралеобразное вращательное движение снизу вверх с большой скоростью - 20-60 м/с. Центробежная сила, возникающая при этом, прижимает капли к стенкам, и они стекают в нижнюю часть корпуса. Очищенный вторичный пар направляется в камеру предварительного нагрева и трубки нагревателя II корпуса. I корпус обогревается техническим паром, который поступает в камеру предварительного нагрева, затем в трубки испарителя к выводится через парозапорное устройство в линию технического конденсата. Избыток питающей воды через трубку из нижней части I и II корпусов подается в испарители, где вода также в виде пленки стекает по наружной поверхности (обогреваемых внутри трубок) по трубе в конденсатор-холодильник в качестве целевого дистиллята. В III корпус питающая вода поступает из нижней части корпуса II. Конденсат внутри трубок III корпуса также передается по трубе в конденсатор-холодильник. Обогрев зоны предварительного нагрева и трубчатых испарителей II и III корпусов осуществляется собственно вторичным паром I и II корпусов. Вторичный очищенный пар из II корпуса по трубе поступает непосредственно в холодильник и конденсируется. Объединенный конденсат из холодильника проходит специальный теплообменник, где поддерживает температура от 80° до 95°С. На выходе из него в дистилляте замедляется удельная электропроводность. Если вода оказывается недостаточного качества по этому показателю, она отбрасывается в канализацию.
Полученная вода поступает
в систему для сбора и
Температура циркулирующей воды поддерживается теплообменникам. Соединяющие трубы должны иметь наклон 2-3°. Максимальный срок хранения воды для инъекций - 24 часа (в асептических условиях).
В соответствии с требованиями к помещениям для производства лекарственных средств в асептических условиях все производственные помещения делятся на 4 класса в зависимости от чистоты воздуха.
Таблица 2. Классы производственных помещений в зависимости от чистоты воздуха.
Класс чистоты |
Содержание частиц |
подпор воздуха мм Hg | |||
мех. частиц в 1 л воздуха |
микробных клеток в1 м3 воздуха | ||||
0,5 |
4 |
5 | |||
мкм |
мкм |
мкм | |||
1 |
10 |
— |
— |
— |
— |
2 |
350 |
15 |
10 |
50 |
3-4 |
3 |
3500 |
50 |
25 |
100 |
1,5-2 |
4 |
— |
— |
— |
___ |
не нормируется |
Помещения 1-го класса чистоты предназначаются для выгрузки и наполнения стерильных ампул. В помещениях 2-го класса проводится приготовление растворов, фильтрование, мойка ампул, сушка и стерилизация. Помещение 3-го класса - для мойки и стерилизации вспомогательных материалов. В помещениях 4-го класса осуществляется мойка дрота, выделка ампул и др.
Между помещениями различных
классов чистоты создается
В „чистых"помещениях необходимо поддерживать определенную температуру и влажность в соответствии с ГОСТ 12.1.005-76. использовать бактерицидные лампы. Помещение должны быть герметизированы. Воздух подается через фильтр предварительной очистки и затем - через стерилизующий фильтр с материалом марки ФПП-1.
Требования к одежде персонала:
Обработка помещений приводится: 6% раствор пероксида водорода с моющими средствами „Прогресс".
Подготовка фильтра ХНИХФИ
Фильтр ХНИХФИ состоит из корпуса и перфорированной трубки, на которую плотно и ровно наматывает фильтрующий материал. Фильтруемая жидкость поступает в патрубок, через слой фильтрующего материала и отверстие в перфорированной трубке проходит внутрь и удаляется через другой патрубок. Корпус фильтра изготовлен из нержавеющей стали.
На внутренний цилиндр укрепляется два слоя ткани ФПП-15 и слой марли толщиной 1,5 см. Цилиндр закрепляют в корпусе фильтра. Фильтр устанавливают в вертикальном положении и присоединяют к нему трубопроводы, подающие жидкость и отводящие фильтрат. Высота столба жидкости должна быть около 1 м.
Регенерация фильтра ХНИХФИ
Регенерация фильтра осуществляется подачей воды очищенной в выпускной патрубок в течение 1,5 часов.
Мембранный фильтр
Используется мембранный фильтр „Владипор" МФА-А на основе ацетил целлюлозы. Размер пор - 1 мкм. Целостность мембраны контролируется „тестом появления пузырьков" - определением давления в момент появления пузырьков в выходящем потоке жидкости. Значение давления появления пузырьков должно совпадать о указанным в технической документации для данного фильтра.
Получение раствора проводят в помещениях второго класса чистоты с соблюдением всех правил асептики при периодическом включении бактерицидных ламп.
Растворение осуществляется в герметически закрытых реакторах из фарфора с паровой рубашкой и мешалкой. Материал сосуда не должен влиять на приготовляемый раствор или загрязнять его.
Перед работой реактор тщательно моют и ополаскивают водой очищенной.
Применяют реактор с пропеллерной мешалкой, имеющий вегитообразно изогнутые лопасти - угол наклона по длине от 45° у ступицы вала и до 20° на конце лопасти. Скорость вращения для жидкости - 3-30 об/сек. В жидкости создаются интенсивные осевые вертикальные потоки, что приводит к захвату всех ее слоев и обеспечивает перемешивание во всем объеме аппарата.
106 155 г кальция глюконата помещают в реактор и заливают водой для инъекций (1008473 мл), кипятят 3 часа с обратным холодильником.
Фильтрацию осуществляют с помощью установки, автоматически обеспечивающей постоянное давление на фильтр. Подлежащая фильтрации жидкость из емкости при помощи вакуума подается в напорный бак, откуда самотеком через промежуточную емкость и емкость постоянного уровня поступает на фильтр. Фильтрат собирается в сборнике, откуда поступает на мембранный фильтр. Скорость фильтрации регулируется с помощью клапана.
При значительном сопротивлении фильтров к сборнику подключают вакуум, постоянство которого автоматически регулируется. Давление фильтрации около 1 м водного столба, объемная скорость фильтрации при этом - 2-3 м3/м2. Фильтрование раствора кальция глюконата осуществляют в горячем состоянии, т. к. при охлаждении образуется осадок
Наполнение ампул проводится в помещениях первого класса чистоты с соблюдением всех правил асептики.
Осуществляется наполнение в автоматах для наполнения и запайки ампул типа 541 шприцевым способом с помощью мембранного дозатора.
Инъекционная жидкость
под давлением чистого
Для проверки точности объема наполнения берется требуемое ГФ количество ампул от партии; объем раствора, выбранного из ампулы калибровочным шприцем при температуре 20±2°С, после вытеснения воздуха и заполнения иглы не должен быть меньше номинального.
Запайка ампул осуществляется в автомате для наполнения и запайки ампул типа 541. На участке запайки с пневматической оттяжкой капилляра ампула прижимается к роликам, вращается, горелка разогревают участок капилляра в месте запайки, а струи сжатого воздуха оттягивают отпаявшуюся часть. Запаянная ампула по транспортеру толкателем подается в приемный питатель.
Контроль качества запайки проходят все ампулы. Проверка герметичности ампул осуществляется 3 методами:
1) заполненную кассету ставят
в вакуум-аппарат капиллярами
книзу, а затем донышками