Автор работы: Пользователь скрыл имя, 14 Марта 2013 в 12:40, курсовая работа
В строительной отрасли значение данных процессов связано, прежде всего, с электрохимической коррозией металлов, которая наносит миллиардные убытки народному хозяйству. Поэтому знание сущности коррозионных процессов и факторов, влияющих на характер и скорость их протекания, имеет большое значение для выбора рациональных методов защиты строительных конструкций от коррозии.
Электрохимическая система состоит из двух частей: электрода и электролита.
Электрод - двухфазное устройство, в котором одной фазой чаще всего является металл или полупроводник, другая фаза - раствор или расплав электролита.
Электрохимические процессы и системы. Коррозия и способы защиты металлов от коррозии………………………………………………………………………………………….2
Равновесие на границе металл-раствор…………………………………………………….…..4
Двойной электрический слой, электродный потенциал……………………………………..12
Гальванические элементы и химические источники тока…………………………………..16
Электроды сравнения………………………………………………………………………….19
Ряд напряжений………………………………………………………………………………...20
Зависимость электродного потенциала от различных факторов……………………………22
Уравнение Нернста…………………………………………………………………………….26
Электродвижущая сила гальванического элемента………………………………………….27
Направление О-В реакции……………………………………………………………………..29
Электролиз……………………………………………………………………………………...35
Потенциал разложения………………………………………………………………………...49
Электролиз расплавов и водных растворов солей…………………………………………...56
Электролиз в промышленности…………………………………………………
Содержание
I.Электрохимические процессы и системы. Коррозия и способы защиты металлов от коррозии
Электрохимическими
называются окислительно-
Схематичная взаимосвязь вопросов, рассматриваемых в разделе
«Электрохимические системы»
В строительной отрасли значение данных
процессов связано, прежде всего, с
электрохимической коррозией
Электрохимическая система состоит из двух частей: электрода и электролита.
Электрод - двухфазное устройство, в котором одной фазой чаще всего является металл или полупроводник, другая фаза - раствор или расплав электролита.
Электроли́т — вещество, распла
Химическое равновесие – состояние химической системы, при котором возможны реакции, идущие с равными скоростями в противоположных направлениях. При химическом равновесии концентрации реагентов, температура и другие параметры системы не изменяются со временем.
Необратимые и обратимые реакции. Если слить растворы кислоты и щелочи, образуется соль и вода, например,
HCl + NaOH = NaCl + H2O, и если вещества были взяты в нужных пропорциях, раствор имеет нейтральную реакцию и в нем не остается даже следов соляной кислоты и гидроксида натрия. Если попытаться провести реакцию в растворе между образовавшимися веществами – хлоридом натрия и водой, то никаких изменений не обнаружится. В подобных случаях говорят, что реакция кислоты со щелочью необратима, т.е. обратная реакция не идет. Практически необратимы при комнатной температуре очень многие реакции, например,
H2 + Cl2 = 2HCl, 2H2 + O2 = 2H2O и др.
Многие реакции обратимы уже в обычных условиях, это означает, что в заметной степени протекает обратная реакция. Например, если попытаться нейтрализовать щелочью водный раствор очень слабой хлорноватистой кислоты, то окажется, что реакция нейтрализации до конца не идет и раствор имеет сильнощелочную среду. Это означает, что реакция HClO + NaOH NaClO + H2O обратима, т.е. продукты этой реакции, реагируя друг с другом, частично переходят в исходные соединения. В результате раствор имеет щелочную реакцию. Обратима реакция образования сложных эфиров (обратная реакция называется омылением): RCOOH + R'OH RCOOR' + H2O, многие другие процессы.
Как и многие другие понятия
в химии, понятие обратимости
во многом условно. Обычно необратимой
считают реакцию, после завершения
которой концентрации исходных веществ
настолько малы, что их не удается
обнаружить (конечно, это зависит
от чувствительности методов анализа).
При изменении внешних условий
(прежде всего температуры и давления)
необратимая реакция может
В конце 19 в. немецкий физикохимик Макс Боденштейн (1871–1942) детально изучил процессы образования и термической диссоциации иодоводорода: H2 + I2 2HI. Изменяя температуру, он мог добиться преимущественного протекания только прямой или только обратной реакции, но в общем случае обе реакции шли одновременно в противоположных направлениях. Подобных примеров множество. Один из самых известных – реакция синтеза аммиака 3H2 + N2 2NH3; обратимы и многие другие реакции, например, окисление диоксида серы 2SO2 + O2 2SO3, реакции органических кислот со спиртами и т.д.
Скорость реакции и равновесие. Пусть есть обратимая реакция A + B C + D. Если предположить, что прямая и обратная реакция проходят в одну стадию, то скорости этих реакций будут прямо пропорциональны концентрациям реагентов: скорость прямой реакции v1 = k1[A][B], скорость обратной реакции v2 = k2[C][D] (квадратными скобками обозначены молярные концентрации реагентов). Видно, что по мере протекания прямой реакции концентрации исходных веществ А и В снижаются, соответственно, уменьшается и скорость прямой реакции. Скорость же обратной реакции, которая в начальный момент равна нулю (нет продуктов C и D), постепенно увеличивается. Рано или поздно наступит момент, когда скорости прямой и обратной реакций сравняются. После этого концентрации всех веществ – А, В, С и D не изменяются со временем. Это значит, что реакция достигла положения равновесия, а неизменяющиеся со временем концентрации веществ называются равновесными. Но, в отличие от механического равновесия, при котором всякое движение прекращается, при химическом равновесии обе реакции – и прямая, и обратная – продолжают идти, однако их скорости равны и поэтому кажется, что никаких изменений в системе не происходит.Доказать протекание прямой и обратной реакций после достижения равновесия можно множеством способов. Например, если в смесь водорода, азота и аммиака, находящуюся в положении равновесия, ввести немного изотопа водорода – дейтерия D2, то чувствительный анализ сразу обнаружит присутствие атомов дейтерия в молекулах аммиака. И наоборот, если ввести в систему немного дейтерированного аммиака NH2D, то дейтерий тут же появится в исходных веществах в виде молекул HD и D2. Другой эффектный опыт был проведен на химическом факультете МГУ. Серебряную пластинку поместили в раствор нитрата серебра, при этом никаких изменений не наблюдалось. Затем в раствор ввели ничтожное количество ионов радиоактивного серебра, после чего серебряная пластинка стала радиоактивной. Эту радиоактивность не могло «смыть» ни споласкивание пластинки водой, ни промывание ее соляной кислотой. Только травление азотной кислотой или механическая обработка поверхности мелкой наждачной бумагой сделало ее неактивной. Объяснить этот эксперимент можно единственным образом: между металлом и раствором непрерывно происходит обмен атомами серебра, т.е. в системе идет обратимая реакция Ag(тв) – е– = Ag+. Поэтому добавление радиоактивных ионов Ag+ к раствору приводило к их «внедрению» в пластинку в виде электронейтральных, но по-прежнему радиоактивных атомов.
Таким образом, равновесными бывают не только химические реакции между газами или растворами, но и процессы растворения металлов, осадков. Например, твердое вещество быстрее всего растворяется, если его поместить в чистый растворитель, когда система далека от равновесия, в данном случае – от насыщенного раствора. Постепенно скорость растворения снижается, и одновременно увеличивается скорость обратного процесса – перехода вещества из раствора в кристаллический осадок. Когда раствор становится насыщенным, система достигает состояния равновесия, при этом скорости растворения и кристаллизации равны, а масса осадка со временем не меняется.
Константа равновесия. Важнейший параметр, характеризующий
обратимую химическую реакцию – константа
равновесия К. Если записать
для рассмотренной обратимой реакции
A + D
C + D условие равенства скоростей прямой
и обратной реакции в состоянии равновесия
– k1[A]равн[B]равн = k2[C]равн
Итак, при равновесии отношение концентрации продуктов реакции к произведению концентрации реагентов постоянно, если постоянна температура (константы скорости k1 и k2 и, следовательно, константа равновесия К зависят от температуры, но не зависят от концентрации реагентов). Если в реакции участвуют несколько молекул исходных веществ и образуется несколько молекул продукта (или продуктов), концентрации веществ в выражении для константы равновесия возводятся в степени, соответствующие их стехиометрическим коэффициентам. Так для реакции 3H2 + N2 2NH3 выражение для константы равновесия записывается в виде K = [NH3]2 равн/[H2]3равн[N2]равн. Описанный способ вывода константы равновесия, основанный на скоростях прямой и обратной реакций, в общем случае использовать нельзя, так как для сложных реакций зависимость скорости от концентрации обычно не выражается простым уравнением или вообще неизвестна. Тем не менее, в термодинамике доказывается, что конечная формула для константы равновесия оказывается верной.
Для газообразных соединений вместо концентраций при записи константы равновесия можно использовать давление; очевидно, численное значение константы при этом может измениться, если число газообразных молекул в правой и левой частях уравнения не одинаковы.
Графики, показывающие, как система приближается к равновесию (такие графики называются кинетическими кривыми), приведены на рисунках.
1. Пусть реакция необратима. Тогда k2 = 0. Примером может служить реакция водорода с бромом при 300° С. Кинетические кривые показывают изменение концентрации веществ А, B, C, D (в данном случае H2, Br2 и HBr) в зависимости от времени. Для простоты предполагается равенство исходных концентраций реагентов H2 и Br2. Видно, что концентрации исходных веществ в результате необратимой реакции снижаются до нуля, тогда как сумма концентраций продуктов достигает суммы концентраций реагентов. Видно также, что скорость реакции (крутизна кинетических кривых) максимальна в начале реакции, а после завершения реакции кинетические кривые выходят на горизонтальный участок (скорость реакции равна нулю). Для необратимых реакций константу равновесия не вводят, поскольку она не определена (К ® ¥).
2. Пусть k2 = 0, причем k2 < k1 и К > 1 (реакция водорода с иодом при 300° С). Вначале кинетические кривые почти не отличаются от предыдущего случая, так как скорость обратной реакции мала (мала концентрация продуктов). По мере накопления HI скорость обратной реакции возрастает, а прямой – уменьшается. В какой-то момент они сравняются, после чего концентрации всех веществ уже не изменяются со временем – скорость реакции стала нулевой, хотя реакция не прошла до конца. В данном случае (K > 1) до достижения равновесия (заштрихованная часть) прямая реакция успевает пройди на значительную глубину, поэтому в равновесной смеси больше продуктов (C и D), чем исходных веществ А и В – равновесие сдвинуто вправо.
3. Для реакции этерификации
уксусной кислоты (А) этанолом
(В) при 50° С константа
4. В сравнительно редком случае, когда константы скорости прямой и обратной реакций равны (k1 = k2, K = 1), для реакции A + B = C + D при [A]0 = [B]0 в равновесной смеси концентрации исходных веществ и продуктов будут одинаковыми и кинетические кривые сольются. Иногда такие условия можно создать соответствующим подбором температуры. Например, для обратимой реакции СО + Н2О = Н2 + СО2 К = 1 при температуре около 900° С. При более высоких температурах константа равновесия для этой реакции меньше 1 (например, при 1000° С К = 0,61) и равновесие сдвинуто в сторону СО и Н2О. При более низких температурах K > 1 (например, при 700° С К = 1,64) и равновесие сдвинуто в сторону СО2 и Н2.