Автор работы: Пользователь скрыл имя, 14 Декабря 2012 в 09:38, реферат
Комплексная механизация строительного производства — одно из главных направлений технического прогресса в строительстве. Она обеспечивает повышение производительности труда и качества выполняемых работ, а также снижает стоимость и сроки строительства. Развитие механизации является важнейшей задачей строительных организаций и ее решению должна быть подчинена вся организация строительных работ.
При выборе кранов и подъемных устройств для требуемых видов работ рассматриваются три основных параметра: общее число рабочих циклов за заданный срок службы, режим нагружения на строительной плащадке и общее количество часов наработки.
Общее число рабочих циклов закладывается на стадии проектирования крана с целью эксплуатации его в течение заданного срока службы в определенных условиях. Весь диапазон возможных чисел рабочих циклов за заданный срок службы кранов разделен на 10 классов использования: от 0 до 9 в зависимости от интенсивности его использования.
В строительстве земляные работы выполняют при устройстве траншей, котлованов, возведении земляного полотна и планировке площадок. Эти работы характеризуются значительной стоимостью и трудоемкостью. Например, в промышленном строительстве они составляют 15% стоимости и около 20% трудоемкости общего объема работ. На земляных работах используется 10% общей численности рабочих строительства. В дорожном строительстве земляные работы составляют до 22% общего объема и имеют тенденцию роста вследствие увеличения объемов транспортировки грунта. Строительство земляного полотна автомобильных дорог из боковых резервов приводит к сокращению сельскохозяйственных угодий. Грунты, отсыпаемые в земляное полотно из боковых резервов, не всегда соответствуют требованиям по прочности и устойчивости.
В настоящее время порядок отвода
земель для строительства
Оценивая грунты с точки зрения их прочности и водоустойчивости, необходимо отметить, что наиболее пригодными для земляного полотна являются крупно- и среднезернистые пески, непылеватые супеси и легкие суглинки. В связи с возросшими требованиями к устойчивости земляного полотна и ограничениями, налагаемыми Основами земельного законодательства, увеличивается объем земляных работ из сосредоточенных резервов с увеличением дальности транспортировки грунта и вероятности разработки грунта I категории.
В условиях Республики Беларусь более 90% земляных работ выполняется при дальности транспортировки грунта свыше 0,05 км, из них 77% — в пределах 0,5-15,0 км.
Эффективность выполнения земляных работ зависит от качества проекта, технологии их выполнения, исключающей многократную переработку одного и того же объема грунта, применения прогрессивных методов с использованием комплексов высокопроизводительных и экономичных машин. Каждая машина комплекса предназначена для определенного рабочего процесса (разработки, транспортировки, разравнивания, уплотнения и планировки грунта, зачистки дна выемок и т.д.). В общем случае одна и та же работа может быть сделана различными комплексами машин. Способ и комплекс машин для конкретных условий выбирают на основании технико-экономического анализа.
Бульдозеры используются в основном при разработке выемок и крайне редко при отсыпке земляного полотна. Рациональная область их применения определяется дальностью транспортировки, коэффициентом сопротивления перемещению и грунтовыми условиями. Движение их при разработке грунта происходит по свежесрезанному или свежеотсыпанному грунту, и коэффициент сопротивления перемещению (без учета уклона) находится в пределах 0,07-0,08. При уклоне ±15° суммарный коэффициент сопротивления перемещению бульдозера изменяется на ±0,26, а производительность — в 2 раза.
На участках с дальностью перемещения грунта до 15 м возведение земляного полотна может производиться экскаваторами, автогрейдерами и грейдер-элеваторами.
Целесообразность применения для конкретных условий определенного комплекса машин зависит от множества факторов: дальности перемещения грунта, коэффициента сопротивления перемещению транспортирующей машины, грунтовых условий, типоразмера машин, объема выполняемых работ и др. Значимость перечисленных факторов для применяемых комплексов различна. Так, определяющим фактором рационального применения прицепных скреперов является дальность транспортировки. Перемещение их происходит постоянно по свежесрезанному или свежеотсыпанному грунту, и средняя скорость изменяется незначительно. При этом используется до 60% мощности двигателя тягача прицепных скреперов традиционной конструкции.
С увеличением дальности
В зависимости от грунтовых условий производительность скреперов может изменяться до 40%.
Сочетание рассмотренных факторов для конкретных условий различно, и рациональная область применения каждого комплекса и типоразмера машин может быть определена только с учетом всех значимых факторов по критерию минимума удельных приведенных затрат.
Многофакторный анализ невозможен без математизации исследуемых процессов и применения ЭВМ. Исследования многих авторов и расчеты на ЭВМ показали, что для различных грунтов и любых значений коэффициента сопротивления перемещению бульдозеры более эффективны при дальности транспортировки грунта до 40 м. При увеличении расстояния перемещения от 40 до 100 м целесообразность применения бульдозеров по сравнению с прицепными скреперами определяется сочетанием других факторов.
При дальности транспортировки
грунта более 1 км можно рекомендовать
комплекс самоходных скреперов или погрузчиков
и экскаваторов с автосамосвалами.
Прицепные скреперы можно применять при
дальности транспортировки от 0,04 до 1 км.
С повышением коэффициента сопротивления
движению рациональная дальность транспортировки
грунта ими увеличивается.
Из комплексов, выполняющих равноценные технологические процессы, предпочтение отдается тому, при работе которого приведенные затраты на единицу разрабатываемой продукции принимают минимальное значение при оптимальной загрузке ведущих машин. Для решения этой задачи разработан алгоритм, схема которого представлена на рис. 12.
При реализации алгоритма разработаны две программы. Первая из них предназначена для записи на магнитную ленту (МЛ) массива условно-постоянной информации. Под условно-постоянной информацией понимается информация, постоянная только для одного строительного предприятия. Вторая программа осуществляет считывание условно-постоянной информации с МЛ, ввод задания на расчет, выбор блока расчета приведенных затрат в зависимости от дальности транспортировки грунта, вычисление приведенных затрат, выбор объема землеройно-транспортных работ, вывод результатов расчета на печать.
Все машины, предназначенные для выполнения землеройно-транспортных работ, разделены на пять групп: ЕР, B,SP,SS, EA. К группе ЕР относятся экскаваторы, погрузчики, грейдеры-элеваторы, к группе Б — бульдозеры; к группе SP — прицепные скреперы, к группе SS — самоходные скреперы; к группе ЕА — экскаваторы и автосамосвалы.
Результаты расчета могут быть получены в одной из четырех форм. Выбор той или иной формы производится в зависимости от значения переменной NF. При NF = 1 на печать выводится: оптимальное количество машин, удовлетворяющее минимуму приведенных затрат, тип этих машин и приведенные затраты. При NF = 2 перечисленные результаты вычисления печатаются для всех типов машин выбранной группы в порядке возрастания приведенных затрат. Форма печати при NF = 3 и NF = 4 аналогична форме печати при NF= 1, и только приведенные затраты выполнения транспортных работ автосамосвалами рассчитываются по единым тарифам.
Для выполнения строительно-монтажных
работ устанавливают
Рис. 12. Алгоритм выбора оптимального комплекса машин для выполнения землеройно-транспортных работ
Целесообразность применения на строительной площадке бурильного оборудования разного типа зависит от эффективности способа бурения. Для разработки мягких и мерзлых грунтов применяются буровые установки и самоходные машины с вращающимся рабочим оборудованием. Для бурения скважин в породах различной прочности используются установки с ударным и ударно-вращательным рабочим оборудованием. При разработке скважин в легких суглинках и плывунах широкое применение находит гидравлический способ бурения. Рабочим органом машины при термобурении является термобур с огнеструйной горелкой. Такие машины эффективно применяются для бурения скважин в горных породах. Главными параметрами, характеризующими эффективность применения бурильных установок на строительной площадке, являются диаметр скважин, глубина бурения, направление бурения и скорость бурения.
Шнековое бурение применяют для скважин диаметром 110-125 мм и глубиной до 30 м, а колонковое — диаметром 45-130 мм и глубиной до 200 м. Для бурения скважин диаметром 300-400 мм и глубиной 150-1200 м применяются роторные бурильные установки. Бурение скважин диаметром 200-250 мм и глубиной до 20 м в очень крепких породах производится установками термического бурения. Скорость термического бурения в 3 раза и более превышает другие виды в аналогичных условиях и в смену составляет 20-30 м. Достоинством этого способа является возможность регулирования диаметра скважин в зависимости от скорости бурения, а недостатком — большой расход кислорода, стоимость которого составляет 60-70% всех затрат.
Для повышения несущей способности слабых грунтов в строительстве широко применяют сваи, что позволяет уменьшать объем земляных работ на 70-75%, расход бетона на 25-30%, снижать трудоемкость работ по возведению подземной части сооружения в 1,5-2 раза. Наиболее широко производится забивка свай с помощью сваебойных установок и погружение их вибрационным способом. Находят применение и методы устройства набивных свай. При погружении свай основными факторами, определяющими выбор оборудования, являются физико-механические свойства грунта, вид свай, глубина погружения и объем свайных работ. Высокой производительностью, простотой в эксплуатации, автономностью и низкой стоимостью работ на строительных площадках хорошо зарекомендовали себя дизель-молоты. Применяются штанговые и трубчатые дизель-молоты. Преимущество трубчатого дизель-молота заключается в большей (в 2-3 раза) энергии удара, но при отрицательных температурах более устойчиво работают штанговые дизель-молоты. На интенсивность погружения сваи влияют частота ударов и соотношение массы сваи и ударной части. Чем меньше отношение т1/т2, тем полнее используется энергия ударов. Практически это отношение должно находиться в пределах 0,5-2,0. Так, для забивки свай длиной 8-10 м рекомендуется применять это соотношение в пределах 1,25 при штанговых и 0,5-0,7 при трубчатых дизель-молотах. Скорость движения ударной части молота не должна превышать 6 м/с, так как при больших скоростях энергия будет затрачиваться на разрушение сваи и наголовника. Несмотря на отмеченные достоинства, применять дизель-молоты на слабых грунтах нецелесообразно, поскольку требуемого сжатия в камере сгорания не происходит. Нельзя его применять и при забивке свай под водой.
Недостатком использования
Буронабивные сваи производят на месте их проектного положения. Изготавливают сваи диаметром 1200 мм и длиной 35 м. Законченные операции по погружению свай оформляются актом, отражающим качество работ.
Для организации производства бетонных работ на строительстве создается комплекс производственных и вспомогательных предприятий. Основные элементы такого комплекса — склады заполнителей и цемента, бетоносмеси-тельное оборудование, установки для подогрева и охлаждения заполнителей, контрольного грохочения, транспортные и уплотняющие средства.
При приготовлении бетонных смесей основной технологической задачей является обеспечение точного соответствия готовой смеси заданному составу. Эта задача решается путем использования кондиционных компонентов смеси и точным их дозированием. Смесь производится на заводах товарного бетона или на бетоносмесительных установках, располагаемых на строительных площадках. Районный завод имеет годовую производительность до 200 тыс. м3 и обслуживает строительные площадки в радиусе до 30 км. Такой завод состоит из секций, каждая из которых может работать в автономном режиме. Себестоимость бетона, производимого на таких заводах, сравнительно низка, однако они экономически оправданы, если гарантировано потребление всей продукции в течение 10 лет. Центральные заводы, как правило, обслуживают одну крупную строительную площадку в течение 5 лет. Они имеют блочную конструкцию и могут перебазироваться за 20-30 суток на трейлерах грузоподъемностью 20 т. Себестоимость бетона на заводах блочной конструкции выше, однако их можно размещать ближе к строительной площадке. Передвижные бетоносмесительные установки производительностью до 30 м3/ч применяются для рассредоточенных объектов с незначительными объемами бетонных работ. Их монтируют на специальных трейлерных прицепах и перевозят с объекта на объект. При месячной потребности в бетоне до 1,5 тыс. м3 применяются инвентарные бетоносмесительные установки с устройствами для точной дозировки компонентов смеси. Все компоненты бетонной смеси дозируют по массе с отклонением для воды и цемента ±1% и для заполнителей ±2%.
При транспортировке бетонной смеси основное технологическое условие — сохранение ее однородности и подвижности. Следует учитывать, что если в пути крупный заполнитель оседает, а цементное молоко и раствор всплывают, то бетонная смесь теряет однородность. На практике пользуются тремя технологическими схемами доставки бетонных смесей к месту их укладки: от места приготовления до отгрузки непосредственно в бетонируемую конструкцию; от места приготовления до места разгрузки у строящегося объекта; от места разгрузки до места укладки в конструкцию. Для транспортировки бетонной смеси по первой и второй схемам применяются автомобили-самосвалы, автобетоновозы и автобетоносмесители, по третьей схеме — бетононасосы, пневмонагнетатели, краны с бадьями, конвейер и вибропитатели. Производительность этих механизмов должна быть на 10% выше производительности транспортных средств. Продолжительность автомобильных перевозок бетонной смеси зависит от ее начальной температуры, температуры воздуха, вида цемента и типа транспортных средств и не должна превышать 60 мин при температуре воздуха выше 10°С и может быть увеличена до 120 мин при температуре ниже 5°С.