Автор работы: Пользователь скрыл имя, 15 Июня 2013 в 13:29, шпаргалка
1. Объект и предмет прикладной статистики.
2. Прикладная статистика как отраслевое направление статистики.
3. Требования предъявляемые к статистическим данным.
...
33.статистические методы исследования общественной и политической жизни
34.прикладные методы изучения вопросов санитарной статистики
6. Задачи и виды группировок
Метод группировок применяется для решения задач, возникающих в ходе научного статистического исследования:
- выделение социально-экономических типов явлений;
- изучение
структуры явления и
- изучение
связей и зависимостей между отдельными при знаками
Для решения этих задач применяют (соответственно) три вида группировок: типологические, структурные и аналитические (факторные).
Типологическая группировка решает задачу выявления и характеристики социально-экономических типов (частных подсовокупностей) путем разделения качественно разнородной совокупности на классы, социально-экономические типы, однородные группы единиц в соответствии с правилами научной группировки.
Примерами
типологической группировки могут служить группировки секторов
экономики, хозяйствующих субъектов по
формам собственности (группы предприятий
государственной собственности)
Признаки, по которым производится распределение единиц изучаемой совокупности на группы, называются группировочными признаками, или основанием группировки. Выделить типичное можно не по любому признаку, а только по определенному, который должен изменяться в зависимости от условий места и времени. Для правильного выбора группировочных признаков необходимо предварительно выявить возможные типы, четко формулировать познавательную задачу.
Если группировочными признаками выступают признаки атрибутивные (форма собственности, отрасль производства и т.д.), то образовать группы сравнительно просто.
Выделение типов на основе количественного признака состоит в определении групп с учетом границ перехода количественного признака в новое качество, в новый тип явления.
Однако во всех случаях типологических группировок выбор группировочных признаков всегда должен быть основан на анализе качественной природы исследуемого явления. Структурной группировкой называется группировка, в которой происходит разделение выделенных с помощью типологической группировки типов явлений, однородных совокупностей на группы, характеризующие их структуру по какому-либо варьирующему признаку.
К структурным
относится группировка
Аналитические (факторные) группировки, в частности, исследуют связи и зависимости между изучаемыми явлениями и их признаками. В основе аналитической группировки лежит факторный признак и каждая выделенная группа характеризуется средними значениями результативного признака. Так, группируя достаточно большое число рабочих по факторному признаку x – квалификации (разряду) с указанием их заработной платы, можно заметить прямую зависимость результативного признака у – средней месячной заработной платы рабочих от квалификации: чем выше квалификация, тем выше и средняя месячная зарплата (хотя у отдельных рабочих с более высоким разрядом она может быть ниже).
Используя в аналитических группировках методы математической статистики, можно определить показатель тесноты (силы) связи между изучаемыми признаками.
В зависимости
от степени сложности массового явления и от
задач анализа группировки могут
Если группы образуются по одному признаку, группировка называется простой (например, распределение населения по возрастным группам, а семей – по уровню доходов и т.д.).
Группировка по двум или нескольким признакам называется сложной.
Если группы, образованные по одному признаку, делятся на подгруппы по второму, а последние - на подгруппы по третьему и т.д. признакам, т. е. в основании группировки лежит несколько признаков, взятых в комбинации, то такая группировка называется комбинационной (например, дополнив простую группировку населения по возрастным группам группировкой по полу, получим комбинационную группировку). Комбинационная группировка позволяет выявить и сравнить различия и связи между исследуемыми признаками, которые нельзя обнаружить на основе изолированных группировок по ряду группировочных признаков. Однако при изучении влияния большого числа признаков применение комбинационных группировок становится невозможным, поскольку чрезмерное дробление информации затушевывает проявление закономерностей. Даже при наличии большого массива первичной информации приходится ограничиваться двумя - четырьмя признаками.
Использование в статистических исследованиях ЭВМ и статистической теории распознавания образов позволило разработать метод группировки совокупности единиц одновременно по множеству характеризующих признаков. Такие группировки получили название многомерных.
Многомерная
группировка или многомерная
классификация основана на измерении
сходства или различия между объектами
(единицами): единицы, отнесенные к одной
группе (классу), различаются между
собой меньше, чем единицы, отнесенные
к различным группам (классам). Многомерные
группировки позволяют решать целый
ряд таких важных задач экономико-
7. Ряды распределения
Различают типы рядов распределения.
Если за основу группировки взят
качественный признак, то такой ряд
распределения называют атрибут
Если ряд распределения
Выделяют три формы
Ранжированный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.
Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести тарифный разряд, количество детей в семье, число работников на предприятии и т.д. Эти признаки могут принимать только конечное число определенных значений.
Если признак имеет
8.основние виды и системы стат. показателей
Статистический показатель — количественная характеристика социально-экономических явлений и процессов в условиях качественной определенности.
Различают показатель-категорию и конкретный статистический показатель:
Показатель категория
Конкретный статистический показатель — это цифровая характеристика изучаемого явления или процесса. Например: численность населения России на данный момент составляет 145 млн.человек.
По форме различают
По охвату единиц различают индивидуальные и сводные показатели.
Индивидуальные показатели — характеризуют отдельный объект или отдельную единицу совокупности (прибыль фирмы, размер вклада отдельного человека).
Сводные показатели — характеризуют часть совокупности или в всю статистическую совокупность в целом. Их можно получить как объемные и расчетные. Объемные показатели получают путем сложения значений признака отдельных единиц совокупности. Полученная величина называется объемом признака. Расчетные показатели вычисляются по различным формулам и используются при анализе социально-экономических явлений.
Статистические показатели по временному фактору делятся на:
Моментные показатели — отражают состояние или уровень явления на определенный момент времени. Например, число вкладов в Сбербанке на конец какого-либо периода.
Интервальные показатели — характеризуют итоговый результат за период (день, неделя, месяц, квартал, год) в целом. Например, объем произведенной продукции за год.
Статистические показатели связаны между собой. Поэтому, чтообы составить целостное представление об изучаемом явлении или процессе, необходимо рассматривать систему показателей.
9. относительные величины в статистике.
Относительная величина – мера количественного
соотношения статистических показателей,
которая отражает относительные
размеры социально-
Относительная величина получается как частное от деления одной величины (текущей отчетной, сравниваемой) на другую величину (базисную, основанием сравнения).
В зависимости от задач, решаемых с помощью относительных величин, различают их следующие виды:
Относительная величина динамики – выражается через соотношение фактической величины показателя за отчетный период к фактической величине показателя за предыдущий период;
Относительная величина планового
задания – отношение
Относительная величина выполнения плана – отношения фактического значения показателя за отчетный период к его плановому значению на тот же отчетный период.
При этом произведение относительной величины планового задания и выполнения планов (в форме коэффициентов) равно относительной величине динамики.
Относительная величина сравнения – соотношения величины одноименных показателей, относящихся к разным объектам или разным территориям;
Относительная величина структур – соотношения величины (части какого либо целого) в величине этого целого;
Относительная величина координации – соотношение частей какого-либо целого между собой;
Относительная величина интенсивности – соотношение размеров двух качественно различных явлений.
Большинство относительных величин
являются безразмерными и выражаются
в форме коэффициентов или
процентов. Только относительная величина
интенсивности имеет единицу
измерения, которая образуется из единиц
измерения числителя и
10.формы и виды средних величин
Большое распространение в статистике
имеют средние величины. Средня
Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней, определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное, позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.
Статистические средние
При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения. При этом, обобщая общее свойство совокупности, средняя затушевывает (занижает) одни показатели и завышает другие.
Например, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т. д.
Средняя выработка отражает общее свойство всей совокупности.
Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак.
Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков в целом, необходимо располагать системой средних величин, которые могут описать явление с разных сторон.