Изготовление штампованных коронок и штампованно-паянных мостовидных протезов

Автор работы: Пользователь скрыл имя, 07 Декабря 2014 в 23:29, дипломная работа

Краткое описание

Конструкция мостовидного протеза подразумевает минимум 2 коронки (опорные элементы) и искусственный зуб между ними. Зуб может быть цельнолитой или со специально отмоделированным местом для размещения облицовки из пластмассы или композиционного материала (фасетка). Зуб в мостовидном (штампованно-паянном) протезе отливается из металла.

Содержание

Введение
Характеристика искусственной коронки как вида протезирования
Понятие искусственной коронки
Плюсы и минусы искусственной коронки
Показания и противопоказания к установке искусственной коронке
Технология изготовления искусственной коронки
Этапы изготовления
Препарирование зубов и получение слепков
Моделирование и получение гипсового штампика и блока
Методы штамповки изготовление металлического штампа
Изготовление штампованно паяных мостовидных протезов
Этапы изготовления
Материалы оборудование
Заключение
Список литературы

Прикрепленные файлы: 1 файл

дипломная валере.docx

— 101.87 Кб (Скачать документ)

Последний, клинический, этап (припасовка и фиксация металлокерамического протеза на цемент) заключается в тщательном контроле фарфорового покрытия после глазурования, определении соответствия цвета и фиксации металлокерамического протеза на цемент.

Лабораторные этапы изготовления металлокерамических протезов

Лабораторные этапы изготовления металлокерамических протезов проводят в следующей последовательности:

— получение комбинированной модели;

— моделирование из воска каркаса металлокерамического протеза;

— отливка и обработка металлического каркаса;

— нанесение и обжиг грунтового, дентинного и эмалевого слоев фарфора.

Получение комбинированной модели

После соответствующей обработки двухслойного оттиска в отпечаток каждого опорного зуба устанавливают хвостовики с учетом их параллели, которые затем укрепляют с помощью стандартных восковых проволок. Далее проводят заливку первого слоя гипсом повышенной твердости (Супергипс — СССР; Fujirock — Япония; Gilstone — Австрия и др.) в оттиск на вибростолике. Через несколько часов проводят вторичное заполнение оттиска гипсом (уже обычным), предварительно смазав вазелиновым маслом свободную часть хвостовика и близлежащий участок для последующего свободного выталкивания штампика из модели.

В дальнейшем на комбинированной модели для исключения деформации восковой композиции и компенсации усадки сплава при литье каркаса проводят двукратное нанесение компенсационного лака и штамповку полимерных колпачков (адапты). Первый слой лака наносят на опорный зуб ниже уступа на несколько миллиметров, второй слой — не доходя до уступа 0,5-1,0 мм. Компенсационный лак выпускается отечественной промышленностью и зарубежными фирмами (Stumflack, ФРГ и др.).

Беззольные полимерные колпачки состоят из пластин толщиной 0,1 и 0,3 мм. Они одновременно разогреваются над пламенем и выдавливаются в специальную массу (керамопласт и др.) штампиком. После затвердевания колпачки снимают и подрезают по периметру уступа, внутренний (0,1) на 1 мм, внешний (0,3) на 2 ммвыше уступа. При моделировании каркаса воском восстанавливается анатомическая форма зубов с учетом толщины фарфоровой облицовки.

Моделирование из воска каркаса металлокерамического протеза

Минимальная толщина смоделированных металлокерамических коронок с адаптой должна составлять около 0,6 мм, промежуточная часть мостовидного протеза должна отстоять от слизистой альвеолярного гребня на 1,5-2,0 мм. Кроме того, при моделировании каркаса с оральной стороны создается выступающая полоса («гирлянда») шириной около 2 мм, которая улучшает теплоотдачу при обжиге металлокерамического протеза. После моделирования каркаса создают литниковую систему. На каждую смоделированную единицу будущего каркаса изготавливают литник толщиной 2-3 мм и длиной 3-4 мм. В свою очередь каждый литник соединяется с питателем (депо) толщиной 5-6 мм, концы которого прикрепляются к литниковой дуге. Затем восковую композицию с литниковой системой снимают с модели, удаляют внутреннюю адапту (0,1 мм) и приступают к отливке металлического каркаса.

Отливка и обработка металлического каркаса

Отливка металлического каркаса проводится безопочным методом с применением формовочного материала «Силиот», «Deguvest» и других, обладающих высокой прочностью и обеспечивающих большую точность. Для отливки каркаса могут быть использованы как отечественные (КХС), так и зарубежные (Wiron, Ultratec, Degudent и др.) сплавы. После отливки металлический каркас очищают в пескоструйном аппарате и отрезают литниковую систему. Металлический каркас должен быть гладким, без трещин и пор. После соответствующей обработки толщина стенок коронок должна быть около 0,3 мм, а межокклюзионное пространство — около 1,5 мм.

Нанесение и обжиг слоев фарфора

Перед нанесением слоев фарфора цельнолитой металлический каркас обрабатывают и на его поверхности получают окисную пленку, которая необходима для прочного соединения фарфора с металлом. Считают, что это соединение происходит за счет химической связи, осуществляемой через невосстановимые окислы, общие для металла и фарфора. Диффузия элементов из сплава в фарфор и наоборот образует по всей поверхности непрерывную электронную структуру. Кроме того, не менее важно наличие механической связи за счет возникающей неровности металла после обработки в пескрструйном аппарате.

Таким образом, после припасовки каркаса в полости рта его обрабатывают в пескоструйном аппарате, для лучшей очистки кипятят в дистиллированной воде в течение 5-7 мин, далее помещают в печь и выдерживают при температуре ЮООе. После этого его обезжиривают в 96е спирте, высушивают и приступают к нанесению грунтового слоя фарфоровой массы. Поверхность высушенного каркаса должна быть серого цвета.

Первый слой, наносимый на каркас фарфоровой массы, — грунтовый (опаковый), имеющий толщину около 0,3-0,4 мм. Наносят его небольшими порциями на каркас, который удерживают чистым пинцетом в руках и конденсируют движениями рифленого инструмента по удерживаемому пинцету и зажиму. Обжиг грунтового слоя проводят в вакууме, и он может быть неоднократным до предотвращения просвечивания металлического каркаса.

Дентинный (второй) слой фарфоровой массы имеет толщину 0,7-0,8 мм, его обжиг проводят дважды в вакууме. Нанесение фарфоровой массы проводят на модели, уплотняя рифлением и удаляя избыток влаги. Дентинную массу на вестибулярной поверхности режущего края частично удаляют и проводят сепарацию зубов.

После припасовки в клинике цельнолитого каркаса с фарфоровой облицовкой приступают к глазурованию. На этом этапе по показаниям проводится подкрашивание протеза с применением красителей. Обжиг проводится в атмосферных условиях.

Для обжига фарфора применяются специальные печи, выпускаемые отечественной промышленностью (г. Таганрог) и зарубежными фирмами (Vita, ФРГ; Shofu, Япония и др.). Для покрытия применяются фарфоровые массы MK-CCCP; Vivodent, ФРГ; Ceramco, США; VMK-68, ФРГ и др.

Ошибки и осложнения при применении металлокерами ческих протезов и их профилактика

Наиболее частой ошибкой является неполноценное обследование пациентов и расширение показаний к изготовлению металлокерамических протезов. Подобная ошибка в дальнейшем может привести к ряду осложнений: функциональной травматической перегрузке пародонта опорных зубов или их антагонистов, отколу керамической облицовки и другим отрицательным моментам.

Во избежание подобных осложнений необходимо строго придерживаться показаний к применению таких протезов, изложенных в настоящих рекомендациях.

Серьезные осложнения могут возникнуть и при применении металлокерамических протезов при аномалиях прикуса, патологической стираемости твердых тканей зубов и парафункции жевательных мышц без соответствующей предварительной ортопедической (ортодонтической) подготовки зубочелюстной системы.

Ошибки и осложнения возможны на клинических и технологических этапах изготовления металлокерамических протезов.

При форсированном и глубоком препарировании без соблюдения необходимых условий (полноценного охлаждения, прерывистого препарирования и др.) возможны травма и термический ожог пульпы.

В процессе получения двухслойных оттисков при проведении ретракции десны возможно повреждение циркулярной связки зуба и обострение патологического процесса (пародонтита). Во избежание подобных осложнений мы рекомендуем проводить поверхностную ретракцию десны с использованием рекомендуемого нами медикаментозного состава.

Ошибки и осложнения возможны также на этапе припасовки металлокерамического каркаса и готового протеза. Для исключения перегрузки пародонта опорных зубов необходимо убедиться в полном соответствии тканей протезного поля зубному протезу и тщательно выверить окклюзию.

В связи с особыми свойствами стоматологического фарфора (отсутствие стираемости) возможна перегрузка опорных зубов после укрепления таких протезов. Поэтому все пациенты с металлокерамическими протезами должны находиться на диспансерном наблюдении.

Получение слепков

Есть данные, что нагретый слепочный материал при попадании в полость или на препарированную коронку вызывает значительное повреждение пульпы. Это, по-видимому, происходит вследствие комбинированного воздействия тепла и давления на пульпу. Выявлено, что при получении слепков температура пульпы поднимается до 52 °С.  Другие исследователи показали, что это может привести к ее сильному повреждению. Отмечены также изменения сосудов и одонтобластов. Препарирование коронки и получение слепков с помощью оттискного материала вызывало дилятацию артериол и образование вторичного слоя одонтобластов. Сразу после помещения нагретого материала на препарированную коронку клыков собаки наблюдалось значительное увеличение пульпарного кровотока. Затем при контакте временного акрилового материала с препарированной поверхностьюзуба он значительно снижался. Использование оттискной массы с медным кольцом имеет две опасности для пульпы: выделение тепла и гидравлическое воздействие, так как медное кольцо плотно сжимает препарированный зуб. Таким образом, выявление Lindholm вторичного слоя одонтобластов и наше наблюдение изменений пульпарного кровотока свидетельствуют, что такая методика получения слепков может вызывать повреждение пульпы.

Гистологи, наоборот, выявили, что гидроколлоидные оттискные материалы и материалы на основе резины хорошо переносятся пульпой. Последние физиологические исследования подтверждают это. При получении слепков с помощью материалов на основе резины пульпарный кровоток изменялся незначительно.

При цементировании коронок и вкладок на пульпу воздействуют большие гидравлические силы, когда цемент прижимают по направлению к центру зуба, оказывая таким образом давление на жидкость в дентинных канальцах.

В крайних случаях это может вызвать отделение слоя одонтобластов от дентина. Однако этого не произойдет, если обнаженный дентин сначала покрыть подкладкой. Кроме гидравлического происходит химическое воздействие цементов. Есть экспериментальные данные, что цементирование коронки цинк-фосфатным цементом вызывает воспаление в пульпе. По мнению других авторов, молекулы связывающего агента не оказывают влияния на пульпу. Очевидно, что необходимы дополнительные исследования этого вопроса.

 

 

 

 

 

 

 

 

 

 

 

 

Моделирование и получение гипсового штампика и блока

По завершении препарирования зуба получают оттиски и гипсовые модели обеих челюстей. Затем модели составляют в центральной окклюзии и загипсовывают в окклюдатор или артикулятор. Подготовленные модели используют для моделирования коронок. 
Моделирование коронок заключается в воссоздании будущей формы коронок с наружной и апроксимальных сторон окклюзионной поверхности. Последнее важно ввиду роли рельефа окклюзионной поверхности в обеспечении плавных движений челюстей при артикуляции, а также с учётом индивидуальных особенностей рельефа. 
Рельеф окклюзионной поверхности зубов зависит от строения и функции ВНЧС, от положения головок нижней челюсти в суставных ямках в положении центральной окклюзии, от суставных путей, характера смещения нижней челюсти в боковые окклюзии, от резцового пути и других факторов. Учёт этих особенностей важен при моделировании окклюзионных поверхностей искусственных коронок и зубов. В случае моделирования плоской, не соответствующей скату суставного бугорка окклюзионной поверхности возможна травма тканей переднего отдела ВНЧС. При моделировании выраженного рельефа окклюзионной поверхности при плоском суставном бугорке возможно развитие функциональной перегрузки пародонта. С целью лучшей адаптации к протезам и предупреждения возможных осложнений при плоском суставном бугорке рекомендуется моделирование низких бугорков и плоских скатов, при отвесном бугорке - высоких бугорков и отвесных скатов боковых зубов. 
От степени наклона скатов суставных бугорков к протетической плоскости зависит степень размыкания боковых зубов при движениях нижней челюсти. Чем больше величина этих углов, тем больше разобщение боковых зубов при передней окклюзии и в боковой окклюзии - боковых зубов балансирующей стороны. 
Если нет достаточного резцового перекрытия в передней окклюзии, то обычно наблюдается контакт боковых зубов. Это может способствовать развитию повышенного стирания зубов. Для согласованной работы всех элементов окклюзионной поверхности с учётом индивидуальных особенностей строения и функции сустава, важно правильно моделировать искусственные коронки и зубы, восстанавливать окклюзионные контакты при всех разновидностях смыкания зубных рядов. Такое восстановление возможно только при помощи индивидуально настроенных артикуляторах. 
Окклюзионная поверхность жевательных зубов представляет собой часть поверхности зуба от вершин бугорков до самого глубокого участка фиссур. 
Она имеет следующие элементы: 
• вершины бугорков и их основания; 
• скаты; 
• гребни; 
• треугольные валики скатов бугорков; 
• краевые валики, соединяющие вершины бугорков; 
• краевые ямки; 
• центральные и дополнительные фиссуры. 
Основные элементы жевательной поверхности зубов - это бугорки. Каждый бугор имеет основание и вершину. Вершины бугров жевательных зубов несколько смещены к середине жевательной поверхности. Вершины всех зубов соединены краевым валиком, который ограничивает окклюзионную поверхность по периферии. Наибольший диаметр зуба в 2 раза больше диаметра его окклюзионной поверхности. От вершины бугорка к середине жевательной поверхности проходят треугольные валики, по которым скользят окклюзионные поверхности зубов-антагонистов.

Между щёчными и язычными (нёбными) бугорками жевательных зубов расположена центральная фиссура, где, как и в дополнительных фиссурах, сходятся скаты и гребни основных бугорков. С медиальной и дистальной сторон нёбная поверхность имеет 2 краевых валика. Эти валики в нижней трети зуба соединяются зубным бугорком, самой выпуклой частью зуба и местом окклюзионных контактов. Между этим бугорком и серединой режущего края находится срединный нёбный валик, по обе стороны которого расположены бороздки. 
С учётом выполняемой роли в процессе механической переработки пищи щёчные бугорки нижних и нёбные бугорки верхних жевательных зубов будут основными. Они раздавливают пищу, определяют характер перемещений нижней челюсти, перераспределяют жевательные силы по направлению вертикальной оси зуба. 
Щёчные бугорки верхних и язычные бугорки нижних жевательных зубов в положении центральной окклюзии имеют лёгкий контакт с антагонистами. Они осуществляют разделение пищи, создают на своих скатах скользящие поверхности для антагонистов при артикуляции, защищают язык и щёки от попадания между зубами, поэтому их называют защитными. 
Оптимальными для выполнения функции жевания будут множественные точечные и равномерные контакты антагонирующих зубов, что и необходимо воссоздать при моделировании искусственных коронок и зубов. Смыкание бугорков и фиссур антагонирующих зубов по принципу «пестик и ступка» придаёт стабильность нижней челюсти во время смыкания зубов и при различных её перемещениях в процессе артикуляции. 
Качественное моделирование окклюзионной поверхности обеспечивается следующими моментами:

• правильным определением врачом центральной окклюзии; 
• правильной установкой моделей в артикуляторе; 
• соблюдением зубным техником основных принципов моделирования. 
Для эффективного моделирования движений нижней челюсти в артикуляторе модели челюстей нужно установить в правильном положении. Правильное положение моделей челюстей между рамами артикулятора определяют при помощи лицевой дуги, устанавливаемой на лице пациента в соответствии с положением челюстей по отношению к шарнирной оси. Для получения отпечатков зубов верхней челюсти в пространство артикулятора переносится сначала положение модели верхней челюсти. Это проводится путём установления лицевой дуги с «прикусной вилкой» в артикулятор с применением «переходного устройства». 
Нижняя модель соединяется с верхней при помощи прикусных блоков после определения центральной окклюзии. 
После установки моделей в артикулятор регулируют суставные углы. 
Для работы с артикулятором при моделировании воском настройка артикулятора на индивидуальную функцию имеет решающее значение, поскольку направляющие и опорные элементы артикулятора программируют все движения нижней челюсти в пределах протезного поля. 
Добиться согласованных движений в суставе и контактов зубов можно только при правильном расположении бугорков и фиссур на окклюзионной поверхности. Необходимо учитывать функцию и строение сустава при моделировании, чтобы избежать преждевременных контактов зубов на рабочей и балансирующей сторонах. 
Известны 2 метода моделирования: 
• моделирование из воскового блока с отпечатками зубов-анта- гонистов; 
• поэтапное моделирование элементов окклюзионной поверхности. 
Поэтапное моделирование - это более точный и менее трудоём- кий метод, он отвечает необходимым требованиям.

Информация о работе Изготовление штампованных коронок и штампованно-паянных мостовидных протезов