Автор работы: Пользователь скрыл имя, 01 Апреля 2014 в 19:50, доклад
Термин «развивающее обучение» активно используется в психологической, педагогической и методической литературе. Тем не менее, содержание этого понятия остается до сих пор весьма проблематичным, а ответы на вопрос: «Какое обучение можно назвать развивающим?» довольно противоречивы. Это, с одной стороны, обусловлено многоаспектностью понятия «развивающее обучение», а с другой стороны, некоторой противоречивостью самого термина, т.к. вряд ли можно говорить о «неразвивающем обучении». Бесспорно, любое обучение развивает ребенка.
• Задание 94. Сформулируйте в виде алгоритмических предписаний следующие математические задания и представьте их в виде схемы
действий:
а) напиши 4 числа, первое из которых равно 1, каждое следующее
в 2 раза больше предыдущего;
б) напиши 4 числа, первое из которых 0, второе больше первого на 1 третье больше второго на 2, четвертое больше третьего на 3;
в) напиши 6 чисел: если первое равно 9, второе 1, а каждое следующее равно сумме двух предыдущих.
Наряду со словесными и схематическими предписаниями можно задать алгоритм в виде таблицы.
Например, задание: «Запиши числа от 1 до 6. Каждое увеличь:
а) на 2; б) на 3» можно представить в такой таблице:
+ |
1 |
2 |
3 |
4 |
5 |
6 |
2 |
|
|
|
|
|
|
3 |
|
|
|
|
|
|
Таким образом, алгоритмические предписания можно задавать словесным способом, схемой и таблицей.
Действуя с конкретными математическими объектами и обобщениями в виде правил, дети овладевают умением выделять элементарные шаги своих действий и определять их последовательность.
Например, правило проверки сложения можно сформулировать в виде алгоритмического предписания следующим образом. Для того, чтобы проверить сложение вычитанием, нужно:
1) из суммы вычесть одно из слагаемых;
2) сравнить полученный результат с другим слагаемым;
3) если полученный результат равен другому слагаемому, то сложение выполнено верно;
4) в противном случае ищи ошибку.
• Задание 95. Составьте алгоритмические предписания, которыми младшие школьники смогут пользоваться при: а) сложении однозначных чисел с переходом через разряд; б) сравнении многозначных чисел; в) решении уравнений; г) письменном умножении на однозначное число.
Для формирования умения составлять алгоритмы нужно научить детей: находить общий способ действия; выделять основные, элементарные действия, из которых состоит данное; планировать последовательность выделенных действий; правильно записывать алгоритм.
Рассмотрим задания, цель которых – выявление способа действия:
Даны числа (см. рисунок). Составь выражения и найди их значения. Сколько всего примеров на сложение можно составить? Как нужно рассуждать при этом, чтобы не пропустить ни одного случая?
При выполнении данного задания ученики осознают необходимость выделения общего способа действий. Например, фиксировать первое слагаемое 31, в качестве второго прибавлять все числа второго столбика, затем в качестве первого слагаемого фиксировать, например, число 41 и опять выбирать все числа из второго столбика, и т. д. Можно фиксировать второе слагаемое и перебирать все числа первого столбика. Важно, чтобы ребенок понял, что, придерживаясь какого–то определенного способа действия, он не упустит ни одного случая и ни один из случаев не запишет дважды.
В зале три люстры и 6 окон. К празднику для украшения от каждой люстры к каждому окну протянули гирлянду. Сколько всего повесили гирлянд? (При решении можно использовать схематический рисунок.)
Для формирования у учащихся умения выявлять способ действия полезны комбинаторные задания. Их особенность в том, что они имеют не одно, а множество решений, и при их выполнении Необходимо осуществлять перебор в рациональной последовательности. Например:
Сколько различных пятизначных чисел можно записать, используя цифры 55522 (цифру 5 можно повторять три раза, 2 – два раза).
Для решения этой комбинаторной задачи можно воспользоваться построением «дерева». Выписывается сначала одна цифра, с которой можно начать запись числа. Дальнейший алгоритм действий сводится к записи цифр, которые можно поставить после каждой цифры, пока не получим пятизначное число. Следуя данному алгоритму, необходимо комбинировать и подсчитывать, сколько раз повторились цифры 5 и 2.
Получились «веточки» с различными числами: 55522, 55252, 55225, 52552, 52525, 52255. Затем выписывается цифра 2.
Записываем числа, двигаясь по «веточкам»: 22555, 25525, 25552, 25255. Ответ: можно записать 10 чисел.
• Задание 96. Подберите комбинаторные задачи, которые вы бы могли предложить ученикам первого, второго и третьего класса при изучении различных понятий начального курса математики.
ГЛАВА 4.ОБУЧЕНИЕ МЛАДШИХ ШКОЛЬНИКОВ РЕШЕНИЮ ЗАДАЧ
4.1. Понятие «задача» в начальном курсе математики
Любое математическое задание можно рассматривать как задачу, выделив в нем условие, т. е. ту часть, где содержатся сведения об известных и неизвестных значениях величин, об отношениях между ними, и требование (т. е. указание на то, что нужно найти). Рассмотрим примеры математических заданий из курса начальных классов:
•> Поставь знаки <, >, =, чтобы получились верные записи: 3 ... 5, 8 ... 4.
Условие задачи – числа 3 и 5, 8 и 4. Требование – сравнить эти числа.
*> Реши уравнение: х + 4 = 9.
В условии дано уравнение. Требование – решить его, т. е. подставить вместо х такое число, чтобы получилось истинное равенство.
<* Выбери из данных фигур те, из которых можно сложить прямоугольник.
Здесь в условии даны треугольники. Требование – сложить прямоугольник.
Для выполнения каждого требования применяется определенный метод или способ действия, в зависимости от которого выделяют различные виды математических задач: на построение, дока–
1 Эльконин Д Б Избранные психологические труды – М , Педагогика, 1989,с 251
2 Давыдов В В Проблемы развивающего обучения – М , Педагогика, 1986,с 9
3 Якиманская И.С. Развивающее обучение. – М., Педагогика, 1979, с. 70.
4 Микулина Г. Г. Психологические основы усвоения смысла вычитания. Начальная школа, 1982, №9.
5 Лехова В П Дедуктивные рассуждения в курсе математики начальных классов. – Начальная школа, 1988, № 5,с. 28–31.
Информация о работе Развитие младших школьников в процессе обучения математике