Автор работы: Пользователь скрыл имя, 11 Июня 2014 в 11:13, курсовая работа
Цель данной работы состоит в изучении методики обучения решению уравнений и их систем в курсе алгебры 7 класса.
Задачи:
-рассмотреть историю возникновения уравнений и их систем
-изучить содержание и роль линии уравнений и их систем в современном школьном курсе математики
- определить основные понятия линии уравнений и их систем
- изучить основные учебники по алгебре 7 класса.
- выявить методические основы изучения уравнений и их систем.
Введение……………………………………………………………………..3
1. Из истории возникновения уравнений и их систем……………...........4
2. Содержание и роль линии уравнений и их систем в современном школьном курсе математики………………………………………………..9
3. Основные понятия линии уравнений и их систем……………...............13
3.1. О трактовке понятия уравнения………………………………...……13
3.2. Равносильность и логическое следование…………………………...17
3.3.О классификации преобразований уравнений и их систем…………20
3.4. Логические обоснования при изучении уравнений и их систем…...24
4. Методические основы изучения уравнений и их систем ……………...30
Заключение…………………………………………………………………..34
Литература…………………………………………………………………...35
Среди неравносильных преобразований есть преобразования, не являющиеся логическим следованием. Например, переход к рассмотрению частного случая (пример: переход от уравнения а - b= 0 к рассмотрению уравнения а=0). Такие переходы можно рассматривать как практические приемы, позволяющие сосредоточить внимание на отдельных шагах процесса решения уравнения.
3.3. О классификации преобразований уравнений и их систем.
Можно
выделить три основных типа таких преобразований:
1) Преобразование одной из частей уравнения.
2) Согласованное преобразование обеих
частей уравнения.
3) Преобразование логической структуры.
Поясним эту классификацию.
Преобразования первого типа используются при необходимости упрощения выражения, входящего в запись решаемого уравнения. Например, решая уравнение cos x-tg x=l, можно пытаться заменить выражение в левой части более простым. В данном случае соответствующее преобразование приводит к уравнению sin x= 1, неравносильному исходному за счет изменения области определения. Возможность получения при такой замене уравнения, неравносильного данному, приходится учитывать при изучении некоторых типов уравнений, например тригонометрических или логарифмических. В классе дробно- рациональных уравнений с этим явлением приходится сталкиваться гораздо реже. (Здесь это связано с возможностью потери корней при сокращении дроби.) Наконец, в классе целых алгебраических уравнений рассматриваемый тип преобразований всегда приводит к уравнениям, равносильным данным.
Преобразование
одной из частей уравнения используют
раньше всех других преобразований уравнений,
это происходит еще в начальном курсе
математики.
Прочность владения навыком преобразований
этого типа. имеет большое значение для
успешности изучения других видов преобразований,
поскольку они применяются очень часто.
Основой
преобразований данного типа являются
тождественные преобразования. Поэтому
классифицировать их можно в соответствии
с классификацией тождественных преобразований,
например раскрытие скобок, приведение
подобных членов и т. д.
Преобразования второго типа состоят
в согласованном изменении обеих частей
уравнения в результате применения к ним
арифметических действий или элементарных
функций. Общей основой всех преобразований
этого типа является логический принцип,
выражающий характеристическое свойство
равенства выражений: если выражения а
и b равны и в выражении F (х) выделена переменная
х, которая может принимать значение а,
то выражения F (а) и F(b) равны: a = b =>F (a)=F
(b).
Преобразования второго типа сравнительно многочисленны. Они составляют ядро материала, изучаемого в линии уравнений.
Приведем примеры преобразований этого типа.
1)-Прибавление
к обеим частям уравнения
2) Умножение (деление) обеих частей уравнения на одно и то же выражение.
3) Переход от уравнения a=b к уравнению ( (a)=( (b), где ( - некоторая функция, или обратный переход.
К третьему типу преобразований относятся преобразования уравнений, и их систем, изменяющие логическую структуру заданий. Поясним использованный термин «логическая структура». В каждом задании можно выделить элементарные предикаты — отдельные уравнения. Под логической структурой задания мы понимаем способ связи этих элементарных предикатов посредством логических связок конъюнкции или дизъюнкции.
В зависимости от средств, которые используются при преобразованиях, в этом типе можно выделить два подтипа: преобразования, осуществляемые при помощи арифметических операций и при помощи логических операций. Первые можно назвать арифметическими преобразованиями логической структуры, вторые — логическими преобразованиями логической структуры.
Наиболее важными для школьного курса математики арифметическими преобразованиями логической структуры являются: а) Переход от уравнения a * b=0 к совокупности уравнений а=0, b=0.
б) Переход от системы уравнений к одному уравнению посредством почленного сложения, вычитания, умножения или деления уравнений, входящих в систему.
Приведем примеры логических преобразований логической структуры: а) Выделение из системы уравнений одного из компонентов. Например,
при решении системы уравнений способом подстановки можно
в качестве первого шага рассмотреть
первое из уравнений (это и будет преобразование
данного типа, условно его, можно изобразить
так: А(В——>А).
Смысл такого преобразования в том, что
выделенное уравнение можно подвергать
дальнейшим преобразованиям независимо
от той системы, в которую оно входит. б)
Замена переменных. В простейшем случае
замена переменных состоит в переходе
от уравнения F (f (x))=0 к системе Связь этой
системы и данного уравнения такова: число
Х0 — решение уравнения F (f (х))=0 тогда и
только тогда, когда пара (х0, f (х0)) — решение
системы. Это преобразование позволяет
одно «сложное» уравнение заменить системой
более простых уравнений. Так решаются
биквадратные уравнения, многие типы иррациональных
и трансцендентных уравнений (например,
при их сведении к алгебраическим уравнениям).
в) Преобразование, противоположное замене переменных, т. е. переход от
системы вида к уравнению F (х, f (х))=0.
Корни этого уравнения и решения данной системы связаны так же, как при замене переменной. Это преобразование назовем подстановкой.
На основе подстановки в процессе обучения алгебре вводится стандартный метод решения системы уравнений с двумя неизвестными: в одном из уравнений одно из неизвестных выражается через другое, полученную при этом систему решают методом подстановки. Этот метод превращается в дальнейшем в курсе школьной алгебры в универсальный метод уменьшения количества неизвестных в системе. г) Укажем еще на преобразования, основанные на тождественно истинных формулах алгебры логики, имеющих вид равносильности или логического следования. Преобразования эти весьма многочисленны, но в практике школьного обучения используются редко. Приведем пример такого преобразования. При решении уравнения 2x+3|x|=l можно в соответствии с определением модуля рассмотреть случаи х ( 0 или х (A /В)/(А /С}.
Изучение и использование преобразований уравнений и их систем, с одной стороны, предполагают достаточно высокую логическую культуру учащихся, а с другой стороны, в процессе изучения и применения таких преобразований имеются широкие возможности для формирования логической культуры. Большое значение имеет выяснение вопросов, относящихся к характеризации производимых преобразований: являются ли они равносильными или логическим следованием, требуется ли рассмотрение нескольких случаев, нужна ли проверка? Сложности, которые приходится здесь преодолевать, связаны с тем, что далеко не всегда возможно привести характеризацию одного и того же преобразования однозначно: в некоторых случаях оно может оказаться, например, равносильным, в других равносильность будет нарушена.
В
итоге изучения материала линии уравнений
учащиеся должны не только овладеть применением
алгоритмических предписаний к решению
конкретных заданий, но и научиться использовать
логические средства для обоснования
решений в случаях, когда это необходимо.
3.4. Логические обоснования при изучении уравнений и их систем.
При
изучении материала линии уравнений значительное
внимание уделяется вопросам обоснования
процесса решения конкретных заданий.
На начальных этапах изучения курса алгебры
и в курсе математики предшествующих классов
эти обоснования имеют эмпирический, индуктивный
характер. По мере накопления опыта решения
уравнений, систем различных классов все
большую роль приобретают общие свойства
преобразований. Наконец, достигнутый
уровень владения различными способами
решения позволяет выделить наиболее
часто используемые преобразования (равносильность
и логическое следование).
Учебные пособия по алгебре имеют существенные
различия в отношении описанных способов
обоснования. Тем не менее выделяются
все указанные направления, причем в общей
для них последовательности. Кратко рассмотрим
каждое из этих направлений.
Эмпирическое обоснование процесса решения. Таким способом описываются приемы решения первых изучаемых классов уравнений. В частности, это характерно для уравнений 1-й степени с одним неизвестным. Методика изучения этих уравнений состоит в предъявлении алгоритма решения таких уравнений и разборе нескольких типичных примеров.
Указанный
алгоритм формируется, естественно, далеко
не сразу. Перед этим разбирается несколько
примеров, причем цель рассмотрения состоит
в выделении в последовательности действий
нужных для описания алгоритма операций.
Объяснения учителя могут быть такими:
«Нужно решить уравнение
5x+4=3x+10. Постараемся все члены, содержащие
неизвестное, собрать в одной части, а
все члены, не содержащие неизвестное,—
в другой части уравнения.
Прибавим к обеим частям уравнения число
(—4), данное уравнение примет вид 5х=3x+10—4.
Теперь прибавим к обеим частям уравнения
(—3х), получим уравнение 5х—3x=10—4. Приведем
подобные члены в левой части уравнения,
а в правой вычислим значение выражения;
уравнение примет вид 2х=6. Разделим обе
части уравнения на 2, получим х=3». Этот
рассказ сопровождается последовательно
возникающей на доске записью преобразований:
5х+4=3х+10
5х=3х+10—4
5х—3х=10—4
……………...
Анализируя
решение, учитель может прийти к правилам
решения уравнений
1-й степени с одним неизвестным. Обратим
внимание на некоторые формальные пробелы
этого изложения. Прежде всего, в таком
рассказе не акцентируется внимание на
том, что под действием преобразований
уравнение преобразуется в некоторое
новое уравнение. Ученики как бы имеют
дело все время с тем же уравнением. Если
бы упор делался непосредственно на переход
от одного уравнения к другому, то это
потребовало бы более внимательного анализа
представлений, связанных с равносильностью,
что как раз не характерно для первых этапов
обучения алгебре.
Далее, вопрос о том, все ли корни уравнения найдены, здесь не ставится. Если даже он и возникает по ходу обсуждения процесса решения, то ответ на него, как правило, не дается. Основную роль играют действия по переносу членов из одной части уравнения в другую, группировка подобных членов.
Таким образом, вопросы обоснования решения уравнения стоят на втором плане, а на первом — формирование прочных навыков преобразований. Отсюда можно сделать вывод: на этом этапе проверка найденного корня служит необходимой частью обоснования правильности решения.
Дедуктивное обоснование процесса решения уравнений без явного использования понятия равносильности. Разобранное обоснование процесса решения не всегда может быть эффективно использовано при изучении других классов уравнений. Тем или иным способом к изучению материала линии уравнений нужно привлекать различные приемы дедуктивного обоснования. Это связано с возрастанием сложности предлагаемых заданий по сравнению с исходным классом (уравнения 1-й степени с одним неизвестным). При этом постоянно приходится опираться на свойства числовой системы и основные понятия теории уравнений (корень уравнения, множество корней уравнения, что значит «решить уравнение»).
При наличии в курсе теоретико-множественных понятий дедуктивное обоснование решения уравнений проводится так: при переходе от рассмотрения уравнения (=g к уравнению (1==g1 обращается внимание на совпадение множеств корней этих уравнений и этот факт обосновывается при помощи свойств равенства числовых выражений. Например, с этой точки зрения переход от уравнения 3х+2у=5 к уравнению у=—1,5х+2,5 обосновывается с использованием свойства: если а=b—верное равенство, то а+с=b+с и ас=bс также верные равенства.
При отсутствии теоретико-множественных
представлений тот же переход производится
тем же, по существу, способом, но с использованием
конкретного решения одного из этих двух
уравнений. Рассуждения при этом проводятся
так:
«Пусть (х0, y0) — решение первого уравнения,
т. е. 3x0+2y0=5. Пользуясь свойствами числовых
равенств, данное равенство можно записать
в виде
y0= —1,5х0+2,5, значит, (х0, y0) — решение второго уравнения». Так же проверяется обратное заключение.
Внешне различие между двумя способами обоснования (помимо того, что в первом используется термин «множество») проявляется в том, что в первом из них пользуются свойствами равенств с переменными, а во втором — свойствами числовых равенств. Сложность обучения любому из этих способов примерно одинакова.
Переход к дедуктивному обоснованию может производиться на различном материале. Например это можно сделать при изучении линейного уравнения с двумя переменными, системы двух линейных уравнений с двумя неизвестными, линейного уравнения с одним неизвестным.
Необходимо, однако, отметить, что, каким бы ни был способ обоснования, он не является самоцелью в курсе школьной математики. Цель изучения обоснований состоит в обеспечении осознанности процесса решения. После того как она достигнута, дальнейшее использование уже обоснованного приема приводит к формированию навыка, которым учащиеся пользуются в дальнейшем, возвращаясь к обоснованию приема только изредка.
Введение для обоснования решения уравнений и их систем понятий равносильности и логического следования. Рассмотренные приемы обоснования опираются на связь линии уравнений и неравенств с числовой системой. Однако последовательное применение этих приемов затруднительно из-за громоздкости рассуждении. Поэтому на определенном этапе изучения содержания курса алгебры происходит выявление общелогической системы обоснований. Уже говорилось о том, что в эту систему входят понятия равносильности и логического следования.
Обратимся к разобранному уравнению 5х+4=3x+10. С использованием равносильности его решение проводится так: «Поскольку перенос членов уравнения из одной части в другую с изменением знака — равносильное преобразование, то, осуществив его, приходим к уравнению, равносильному данному: 5х—3х=10—4. Упрощая выражения в левой и правой частях уравнения, получим 2х=6, откуда х=3».
Отметим особенности приведенного решения по сравнению с изложенным ранее. Прежде всего, оно более свернуто, предполагает намного более высокий уровень владения материалом курса алгебры. Поэтому применению такого способа решения уравнений и их систем должна предшествовать большая подготовительная работа. Объем предварительного материала зависит от общих методических установок, используемых в учебных пособиях. Например, в учебниках алгебры для VI—VIII классов под редакцией А. И. Маркушевича понятие о равносильности вводится спустя полтора года после начала изучения систематического курса алгебры. В других курсах оно вводится гораздо позже, в старших классах.
В
случае отсутствия понятий равносильности
и логического следования описание процесса
решения также становится постепенно
все более сжатым.
Отсутствие указанных терминов проявляется
в том, что само описание решения не содержит
элементов обоснования, которое в этих
условиях произвести достаточно сложно.
По этой причине в пособиях, где равносильность
и логическое следование появляются поздно,
сравнительно большое внимание уделяется
формированию не общих приемов решения
уравнений, а навыков решения уравнений
тех или иных классов.
Информация о работе Методика обучения решению уравнений и их систем в курсе алгебры 7 класса