Автор работы: Пользователь скрыл имя, 11 Июня 2014 в 11:13, курсовая работа
Цель данной работы состоит в изучении методики обучения решению уравнений и их систем в курсе алгебры 7 класса.
Задачи:
-рассмотреть историю возникновения уравнений и их систем
-изучить содержание и роль линии уравнений и их систем в современном школьном курсе математики
- определить основные понятия линии уравнений и их систем
- изучить основные учебники по алгебре 7 класса.
- выявить методические основы изучения уравнений и их систем.
Введение……………………………………………………………………..3
1. Из истории возникновения уравнений и их систем……………...........4
2. Содержание и роль линии уравнений и их систем в современном школьном курсе математики………………………………………………..9
3. Основные понятия линии уравнений и их систем……………...............13
3.1. О трактовке понятия уравнения………………………………...……13
3.2. Равносильность и логическое следование…………………………...17
3.3.О классификации преобразований уравнений и их систем…………20
3.4. Логические обоснования при изучении уравнений и их систем…...24
4. Методические основы изучения уравнений и их систем ……………...30
Заключение…………………………………………………………………..34
Литература…………………………………………………………………...35
Оглавление
Введение…………………………………………………………
1. Из истории возникновения уравнений и их систем……………...........4
2.
Содержание и роль линии
3.
Основные понятия линии
3.1. О трактовке понятия уравнения………………………………...……13
3.2. Равносильность и логическое следование…………………………...17
3.3.О классификации преобразований уравнений и их систем…………20
3.4. Логические обоснования при изучении уравнений и их систем…...24
4. Методические основы
изучения уравнений и их
Заключение……………………………………………………
Литература……………………………………………………
Введение
Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.).
Цель данной работы состоит в изучении методики обучения решению уравнений и их систем в курсе алгебры 7 класса.
Задачи:
-рассмотреть
историю возникновения
-изучить
содержание и роль линии
- определить основные понятия линии уравнений и их систем
- изучить основные учебники по алгебре 7 класса.
-
выявить методические основы
изучения уравнений и их
Алгебра
возникла в связи с решением разнообразных
задач при помощи уравнений. Обычно в задачах
требуется найти одну или несколько неизвестных,
зная при этом результаты некоторых действий,
произведенных над искомыми и данными
величинами. Такие задачи сводятся к решению
одного или системы нескольких уравнений,
к нахождению искомых с помощью алгебраических
действий над данными величинами. В алгебре
изучаются общие свойства действий над
величинами.
Некоторые алгебраические приемы решения
линейных и квадратных уравнений были
известны еще 4000 лет назад в Древнем Вавилоне.
Квадратные уравнения в Древнем Вавилоне
Необходимость решать уравнения не только первой, но и второй степени, еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:
х2 + х = , х2 – х = 14
Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.
Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.
Как составлял и решал Диофант квадратные уравнения
В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.
При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.
Вот, к примеру, одна из его задач.
Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение — 96».
Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е. 10 + х, другое же меньше, т. е.. 10 - х. Разность между ними 2х. Отсюда уравнение
(10+x)(10—x) =96, или же
100 —x2 = 96.
х2 - 4 = 0
Отсюда х = 2. Одно из искомых чисел равно
12, другое 8. Решение х = - 2 для Диофанта
не существует, так как греческая математика
знала только положительные числа.
Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения
y(20-y)=96
y2 - 20y+96=0
Ясно,
что, выбирая в качестве неизвестного
полуразность искомых чисел,
Диофант упрощает решение; ему удается
свести задачу к решению неполного квадратного
уравнения
Квадратные уравнения в Индии
Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:
аx2 + bх = с, а> 0. (1)
В уравнении (1) коэффициенты, кроме а, могут
быть и отрицательными. Правило Брахмагупты
по существу совпадает с нашим.
В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.
Вот одна из задач знаменитого индийского математика XII в. Бхаскары.
3 а д а ч а 13.
Обезьянок резвых стая
А двенадцать по лианам
Всласть поевши, развлекалась
Стали прыгать, повисая
Их в квадрате часть восьмая
Сколько ж было обезьянок,
На поляне забавлялась
Ты скажи мне, в этой стае?
Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.
Соответствующее задаче 13 уравнение
(x/8)2 + 12 = x Бхаскара пишет под видом
X2 - 64x = - 768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем:
X2 - 64х + 322 = -768 + 1024,
(х - 32)2 = 256, х - 32= ±16, x1 = 16, x2 = 48.
Квадратные уравнения у ал-Хорезми
В алгебраическом трактате ал-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:
1) «Квадраты равны корням», т. е. ах2 = bх.
2) «Квадраты равны числу», т. е. ах2 = с.
3) «Корни равны числу», т. е. ах = с.
4)
«Квадраты и числа равны
5)
«Квадраты и корни равны числу»
6)
«Корни и числа равны
Для ал-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.
Приведем пример.
Задача
14. «Квадрат и число 21 равны 10 корням. Найти
корень»
(подразумевается корень уравнения х2 + 21 = 10х).
Решение
автора гласит примерно так: раздели пополам
число корней, получишь 5, умножь 5 само
на себя, от произведения отними 21, останется
4.
Извлеки корень из 4, получишь 2. Отними
2 от 5, получишь 3, это и будет искомый корень.
Или же прибавь 2 к 5, что даст 7, это тоже
есть корень.
Трактат
ал-Хорезми является первой дошедшей до
нас книгой, в которой систематически
изложена классификация квадратных уравнений
и даны формулы их решения.
2. Содержание и роль линии уравнений и их систем в современном школьном курсе математики
Материал, связанный с уравнениями, составляет значительную часть школьного курса математики. Это объясняется тем, что уравнения широко используются в различных разделах математики, в решении важных прикладных задач.
Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера, решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX—VI вв. до н. э.), имела расчетный характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения, составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Таким образом, был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучения.
Это
изучение осуществлялось уже в другую
эпоху сначала арабскими математиками
(VI—Х вв. н. э.), выделившими характерные
действия, посредством которых уравнения
приводились к стандартному виду (приведение
подобных членов, перенос членов из одной
части уравнения в другую с переменой
знака), а затем европейскими математиками
Возрождения, в итоге длительного поиска
создавшими язык современной алгебры
(использование букв, введение символов
арифметических операций, скобок и т. д.).
На рубеже
XVI—XVII вв. алгебра как специфическая часть
математики, обладающая своим предметом,
методом, областями приложения, была уже
сформирована. Дальнейшее ее развитие,
вплоть до нашего времени, состояло в совершенствовании
методов, расширении области приложений,
уточнении понятий и связей их с понятиями
других разделов математики. В этом процессе
все яснее становилась важность роли,
которую играло понятие уравнения в системе
алгебраических понятий.
Открытие координатного метода (Декарт, XVII в.) и последовавшее за ним развитие аналитической геометрии позволили применить алгебру не только к задачам, связанным с числовой системой, но и к изучению различных геометрических фигур. Эта линия развития алгебры упрочила положение уравнения как ведущего алгебраического понятия, которое связывалось теперь уже с тремя главными областями своего возникновения и функционирования: a) уравнение как средство решения текстовых задач; b) уравнение как особого рода формула, служащая в алгебре объектом изучения; c) уравнение как формула, которой косвенно определяются числа или координаты точек плоскости (пространства), служащие его решением.
Каждое из этих представлений оказалось в том или ином отношении полезным.
Таким образом, уравнение как общематематическое понятие многоаспектно, причем ни один из аспектов нельзя исключить из рассмотрения, особенно если речь идет о проблемах школьного математического образования.
Ввиду
важности и обширности материала, связанного
с понятием уравнения, его изучение в современной
методике математики организовано в содержательно
- методическую линию — линию уравнений
и неравенств. Здесь рассматриваются вопросы
формирования понятий уравнения и неравенства,
общих и частных методов их решения, взаимосвязи
изучения уравнений и неравенств с числовой,
функциональной и другими линиями школьного
курса математики.
Выделенным областям возникновения и функционирования понятия уравнения в алгебре соответствуют три основных направления развертывания линии уравнений и неравенств в школьном курсе математики. а) Прикладная направленность линии уравнений раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Этот метод широко применяется в школьной математике, поскольку он связан с обучением приемам, используемым в приложениях математики.
В настоящее время ведущее положение в приложениях математики занимает математическое моделирование. Используя это понятие, можно сказать, что прикладное значение уравнений, их систем определяется тем, что они являются основной частью математических средств, используемых в математическом моделировании. б) Теоретико-математическая направленность линии уравнений раскрывается в двух аспектах: во-первых, в изучении наиболее важных классов уравнений, и их систем и, во-вторых, в изучении обобщенных понятий и методов, относящихся к линии в целом. Оба эти аспекта необходимы в курсе школьной математики. Основные классы уравнений связаны с простейшими и одновременно наиболее важными математическими моделями. Использование обобщенных понятий и методов позволяет логически упорядочить изучение линии в целом, поскольку они описывают то общее, что имеется в процедурах и приемах решения, относящихся к отдельным классам уравнений, неравенств, систем. В свою очередь, эти общие понятия и методы опираются на основные логические понятия: неизвестное, равенство, равносильность, логическое следование, которые также должны быть раскрыты в линии уравнений в) Для линии уравнений характерна направленность на установление связей с остальным содержанием курса математики. Эта линия тесно связана с числовой линией. Основная идея, реализуемая в процессе установления взаимосвязи этих линий,— это идея последовательного расширения числовой системы. Все числовые области, рассматриваемые в школьной алгебре и началах анализа, за исключением области всех действительных чисел, возникают в связи с решением каких-либо уравнений и их систем. Области иррациональных и логарифмических выражений связаны соответственно с уравнениями хk = b (k - натуральное число, большее 1) и ax=b.
Информация о работе Методика обучения решению уравнений и их систем в курсе алгебры 7 класса