Математикалық ұғымдар және оларды қалыптастыру процесі

Автор работы: Пользователь скрыл имя, 27 Ноября 2015 в 18:47, курсовая работа

Краткое описание

Сондықтан математикалық объектілер заттар мен құбылыстардың сандық және кеңістік қасиеттері мен қатынастарын ерекшелендіре отырып, барлық басқа қасиеттерінен абстракциялаудың нәтижесі болып табылғанымен, шын мағынасында сол күйінде кездеспейтін бірақта нақты заттар мен құбылыстарды бейнелейтін идеал қабылданатын объектілер болып табылады. Шынында да , бізді қоршаған әлемде сан да, геометриялық фигура да жоқ. Оның бәрі тарихи даму процесінде адам ақылымен жасалған, бірақ олар бей берекет қалай болса солай емес, нақты әлеммен байланысты жасалған.

Содержание

Кіріспе

І-тарау Математиканың негізгі ұғымдары
Математикалық ұғымдар
Ұғымның мағынасы мен көлемі, ұғымның анықтамасы
П-тарау Математикалық ұғымдар және оларды қалыптастыру процесі
2.1 Математикалық ұғымдар және оларды қалыптастыру
процесі, Анықталатын жэне анықталмайтын ұғымдар
2.2 Ұғымдардың анықталу тәсілдері
2.3 Натурал сан мен нөл ұғымдары
Сан ұғымын кеңейту мәселесі
Нақты дүние қасиеттерінің шама ұғымы арқылы иеленуі,
шама және оны өлшеу ұғымдары
Қорытынды
Әдебиеттер тізімі

Прикрепленные файлы: 1 файл

Дип.-Бастауыш-мектеп-оқушыларына-сауатты-тұрде-оқыту.doc

— 496.50 Кб (Скачать документ)

Уақыт өте келе адамдар сандарды атауды1 ғаиа емёс,' оларды белгзлеуді де, сондаи-ақ олармен амавдар ЬрЬіндаудьі да үйренді. Осынау мәселелерді шещудегі көіттегён кикіғііітыльіктар Вжёліі' Үндістанда сандардың ондық жазуы мен нөл ұғымының жасалуы нәтижесінде ғана жойылды. Әуелде санның жоқтығын білдіртеі! нөл теріс сандар ұғымы енгізілгсннен кейін ғана сан ретінде карастырылатын болды. Натурал сандар жиыйының ' шексіздіғі туралы түсінік те бірііндеп калыитасгы. "Нагурал сан" термйнін

 

тұңғыш рет римдік ғалым А.Боэций (шамамен 480-524 жылдар) қолданған.


Санаудың ондық жүйесі тұрінде біздің заманымыздың шамамен VI ғасырында Үндістанда қалыптасты. Нөл үшін ерекше белгі енгізу үндістандық ғылымның маңызды жетістігі болады. Нөл енгізілгеннен кейін ғана жазудың ондық жүйесі толығынан аяқталды. Алдымен нөлдің абақтың тиісті разрядында тастардың жоқтығын белгілеу үшін пайда болуы да ықтимал.


Натурал сан ұғымы қалыптасқаннан кейін сандар дербес лбъектілерге айналды және оларды математикалык объектілеп ретінде зерттеудің мүмкіндігі пайда болды. Арифметика -сандарды және олармен жүргізілетін амалдардызеттейтін ғылым, Ежелгі Шығыс елдерінде: Вавилонда, Қытайда, Үндістанда, Египетте дүниеге келді. Осы елдерде жинақталған математикалық білімдерді Ежелгі Грецияның ғалымдары дамытып, жалғастырды. Орта ғасырда арифметиканьщ дамуына Үндістанның, араб елдері мен Орта Азия математиктері, ал XII ғасырдан бастап - европалық ғалымдар үлес костьт.



Сөйтіп, ежелгі дүние ғалымдарының еңбектерінің өзінде - ақ натурал сандардың қатарының шексіздігі анықталды (б.д.д III ғ.). Натурал қатардың, жай сандар қатарының шексіздігі жайында және соншалық үлкен сандар атауларын жасау Евклидтің "Бастамалар" деген әңгілі туындысында және Архимедтің "Құмды санау туральГ ("Псаммит") деген кітабында карастырылады.

35

 

XIX   ғасырда   ғалымдардың   назары    натурал    санның

математикалық теорияларын, яғни натурал сандармен есептеулер

іжүргізуге  негіз  болған теорияларды құруға  және  логикалық

шрғыдан негіздеуге аударылды. Санның натурал қатарындағы

терең заңдылықтарды зеттеу қазіргі уақытқа дейін жалғастырылып,

сандар теориясын да дамытуда.

Натурал сандар ұғымыныц соншалық қарапайым л^шс іабиі-и

■көрінетіні сондай, ғылымда үзақ уақыт бойы оны қандай да болсын

1

рарапайым ұғымдардың терминдерімен анықтау туралы мәселе қойылған жоқ.

Натурал санды және сандардың натурал катарын анықтаудың мейлінше әр тұрлі жолдары және соған сәйкес натурал сандар іжиынындағы операциялар (амалдар) мен қатынастарды енгізуге Іқатысты да тұрліше жолдар орын алып келеді. Натурал сандар жиынымен бір ғана элементтен - 0 санынан тұратын жиынның бірігуі болып табылатын теріс емес бүтін сандар жиынын құрудың әртұрлі жолдары осыған байланысты.

Теріс емес бүтін сандар жиынын құрудың теориялық-жиындық тәсілі тұрғысынан, натурал сан деп бос емес шектеулі бір-бірімен эквивалентгі жиындар класының ортақ қасиетін айтады. Ондай тәсіл мейлінше көрнекі және істің шын мәнісінде мектепке өтілетіндерге дәл келеді. Алайда оның бір елеулі кемшілігі бар: негізгі ұғым - шектеулі жиын, бұл жағдайда белгісіз болып қалады (анықталмайды). Шектелу жиындардың айырмашылыктарын I түсіндірген кезде, әдетте, шектеулі жиындар барлық элементтерін

36

 

"толық атап шығуға", бірінен  соң бірін оларды "көрсетіп  беруге" болатын жиындар дейді, немесе бұлар элементтерін "санап шығуға" болатын жиындар деп аталынады.

Бірінші жағдайда біз тәжірибе мен интуицияға (сезімге) негізделген сипаттаумен істес боламыз, ал екінші жағдайда - кайта есептеуге сілтеме жасау, мәнісі жөнінен жиынның "натурал катар кесіндісіне" бейнелеуін білдіреді де, натурал сан туралы тұжырымдалып қойған ұғымды қолдануды көздейді. Натурал сан ұғымына негізделиеген шектеулі жиын ұғымының мүмкін болатын формальді анықтамалары бастапқы арифметиканың мектептік курсын құруға негіз бола адмайды.

Сондықтан сандық теорияда натурал сан әуес баста-ақ шектеулі жиын элементтерінің саны ретінде, яғни жалпы ұғым болып табылатын кез-келген жиынның қуаты ұғымының жеке жағдайы ретінде қабылданғанымен, натурал сандар арифметикасын бастапқы оқыту натурал сандар туралы алғашқы түсініктерді қалыптастырудың нақты жолдарын ескемей кете алмайды. Сондықтан натурал сандар заттарды санау кезінде қолданылады деп есептейді. Санау процесшде реттік натурал сандарды пайдаланылады, ал жиынның барлық элементтерін санап шыккан соң осы жиынның сандық сипаттамасын алады. Басқа сөзбен айтқанда, санау кезінде сандардың натурал қатарының кесіндісін пайдаланылады.

»

37

 

2.4 Сан ұғымын кеңейту мәселесі

.'';' 

Біз натурал сан мен нөл ұғымдарының қалай пайда болып, қалай дамығанын білеміз Сондай-ақ бұған дейін теріс емес бүтін сандар жиынын (Конемесе Ео) әр тұрлі )финиттік, теориялык-жиындық және аксиоматикалық) тұрғыдан құруды да қарастырғанбыз. Мүнымен қоса иатурал санды шамаларды өлшеудің нәтижесінде шығарып алуға болатындығын да оқығанбыз, яғни өлшенетін шаманы әркайсысы өлшем бірлігіне тең бірнеше бөліктерге бөлу, қандай да болсын, әйтеуір бер мағынада мүмкін болса, онда өлшеу нәтижесі (немесе шаманың өлшемі) натурал сан арқылы өрнектеледі.

Жалпы алғанда, сан және фигура ұғымдары, басқа ешқайдан емес, тек шындық дүниеден алынған. Адамдардың санауға үйренген, япш алғашкы арифметикалық есеп шығаруға уйренген он саусағын не десеңіз ол деңіз, тек әйтеуір ол ақыл-ойдың еркін творчествосының жемісі емес. Санау үшін, саналуға тиісті нәрселердің болуы ғана емес, сонымен бірге, бұл нәрселерге көз жібергенде, олардың санынан басқа қасиеттеріне алаңдамайтын қабілет те болу керек, ал ол қабілет - тәжірибеге сүйенғен үзақ тарихи дамудың нәтижесі.

Натурал сандардың N жиыны сан ұғымын кеңейту процесіндеғі бастапқа жиын болып табылады. Өте ерте заманда пайда болған натурал сан ұғымы көптеген ғасырлар бойы жалпыланып, кейейе түсті. Сонда сан жайындағы    түсініктер

38

 

адамзаттың практикалык  мүқтаждығына,  мәселен,  шамаларды өлшеудің    қажеттігіне    және    математиканың    өзінің    ішкі мүқтаждығына байланысты кейейіп отыратындыгы  баііқалады. Мысалы, шамаларды неғұрлым дәлірек өлшеудің мұқтаждығы оң бөлшек ұғымының тууына себепші болса, теңдеулерді  шешу тәжірибелері    мен    осы    саладағы   теориялык    зерттеулерге байланысты теріс сандар ұғымы пайда болды. Бастапкыда санның ■жоқ екендігін белгілеу үшін қолданылған нөл, теріс сандар Генгізілгеннен кейін, 2 бүтін сандар жиынындағы, сондай-ак <3 рационал    сандар    жиынындағы    толыққанды    сан    ретінде карастырылатын болды.

Б.э.д. V ғасырда, Пифагор мектебінде кесінді үзындығын дәл өлшеу үшін оң рационал сандардың жеткіліксіз болатындығы тағайындалды. Кейінірек, осы мәселенің шешілуіне байланысты I иррационал  сандар  пайда  болды,  ал     XVI  ғасырда  ондык ■ бөлшектердің енгізілуіне байланысты нақты сандарға қарай қадам жасалды. Нақты санның қатаң тұрдегі анықтамасы меы нақты Цсандар жиынының қасиеттері XIX ғасырда түжырымдалды. '       Нақты сан ұғымы сандар қатарындағы ең соңғы ұғым емес. Сан ұғымын кеңейту прцесін одан әрі жалғастыра беруге болады және бұл процесс жалғасады да - мүны математиканың және басқа да ғылымдардың дамуы талап етуде. Мәселен, комплекс сандар теріс сандар сияқты, математика ғылымының іштей дамуына, атап айтқанда алгебралык теңдеулерді шешу тәжірибесіне байланысты пайда болды. Тарихи тұрғыдан алғанда, комплекс сан ұғымы XVI

39

 

ғасырда екшші дәрежелі теңдеулерді шешу мәселесінен келіп шыққан. Комплекс сандар нақты сандар сияқты мөлшерді сипаттағанымен, нақты сандар терминдерінеде құрастырылған есептерді шешуде оларды қолданудың пайдасы тиеді. Таза математикалық есптерді шешу барысында да комплекс сандарды қолдану маңызды болып саналады. Мәселен, куб теңдеулерінің нақты түбірлерін табу комплекс сандарға амалдар колдануды талап


етеді. Комплекс сан деп ^^(мұндағы а,Ье К, ал / - қандай да бір

символ) тұріндегі өрнекті түсінеді. Барлық комплекс сандар жиынын С деп белгілейді. Сонда 2=а+Ыкомшіскс сандардағы «з-ны оның нақты бөлігі Ь санын жорымал белгі деп атайды. Комплекс санды жазықтықта вектор тұрінде немесе нүкте тұрінде кескіндеп көрсетуге болады.

Сан ұғымын жалпылау барысында қазіргі кезде гиперкомплекс сандар ұғымы келіп шықты. Гиперкомплекс сан ұғымы комплекс санға қарағанда неғүрлым кең ұғым. Гиперкомплекс сандардың қарапайым мысалы физика мен техникада, атап айтқанда электр және элкетро-техника теориясында қолданылатын векторлық алгебраның дауына себепші болған кватерниондар болып табылады. Сондай-ақ, самолет қанатының прфилін (пішінін) анықтау мен самолет теориясының негізгі заңдылықтарын қорытындылауда комплекс сандарлың қолданылуын ерекше атап айтуға болады.

Сан жайындағы жаңа түсініктердің пайда болумен бірге осы жаңа сандық объектілерге амалдар қолдану ережелерін негіздеу

40

 

қолға алынып отырылды. Алайда, сандар және оларға қолданылатын амалдар жайындағы жинақталған мәліметтер математикалық теория ретінде XIX гасырдыд скіиші жаргысында, көптеген көрнекі математиктер математиканы негіздеу мәселесімен айналыса бастағанда ғана бір жүйеге келтірілді.


Қазіргі кезде әр тұрлі сандық жиындарды мына ретпен қарастыру қабылданған: натурал сандар (Ы жиыны),    бүтін сандар (2 жиыны), рационал сандар (С> жиыны), нақты сандар (К. жиыны), комплекс сандар (С жиыны)

Алгебра жалпы ұғым ретінде. Біз жиындармен, пікірлермен, предикаттармен, саыдармсн және т.б. жүрпзшетш операциялармен таныспыз. Демек бұл, операцияларды табиғаты әралуан кез-келген объектілермен жүргізуге болатындығын және бұл жағдайды оның көптеген жалпы қасиеттерінің сақталатындығын білдіреді.

[ Сондықтан табиғаты әралуан  объектілерге қолданылатьш : операцияларды  бірізді көзқарас негізінде зерттеуді  жүзеге асыру

| мақсатында және осыған мүмкіндік  туғызу үшін берілген жиындағы  алгебралық операция ұғымы енгізіледі.

Біз әрбір нақты операцияньщ өз белгісі бар екендігін білеміз. Мысалы: қосу - "+" таңбасымен, азайту - "-" атңбасымен, көбейту -"л"   немесе   "."   таңбасымен,   бөлу   -       ":"   таңбасымен

I белгіленеді.Дербес      жағдайларда      амалдарды      алгебралық

| операциялардың мысалы ретінде  қарастырғанда, бұл таңбалар сәйкес амалдардың белгіленуі ретінде пайдаланылады. Бірақ та ;жалпы    алғанда,    алгебралық    және    дербес     алгебралык

41

 

операцияларды белгілеу үшін *, о, т және басқа шатты таңбалар қолданылады. Сондықтан ъ элементі (х,у) элементтерімен жүргізілген операцияның нәтижесі деген былай белгіленеді: х*у, хоу, хТу және т.б.

Алгебралық операцияның таңбасы компенентерінің арасына қойылады. Сонымен бірге бұл жазу операцияның нәтижесі алгебралык операция берілгсн жиыи элсіҮісш ісрінің ренелген парына сәйкес келетін оның үшінші элементін көрсетеді.

Мектепте оқылатын геометриялық ұғымдардың жүйесі

Мектеп матиматика курсында геометрияны оқып-үйренуге айтарлықтай орын берілген. Қазіргі қолданылып жүрген оқу бағдарламасы мектепте оқылатын дәстұрлі геометриялық білім мазмұнына да, оны оқыту жүйесіне де үлкен өзгерістер енгізді. Ғыльши-техникалық ирогрестщ қазіргі заманғы өскелең талаптарына сәйкес мектеп геометриясы курсын аксиоматикалық тұрғыда күруда ұғымдар мен анықтамалар жүйесін жасауда қатаңдық күшейтілді.

Геометрия курсы пән ретінде өзінің бүкіл өмір сүру кезеңінде барлық дүниежүзінің елдерінде евклид аксиомалары жүйесі негізінде құрылған. Көптеген ғалымдардың математиканы дамыту барысында Евклид геометриясының логикалык күрылымын жетілдірумен айналысуы түсінікті де. Бастапқыда мұндай жетілдірулерді кейбір ғалымдар (Дж. Пеано, М. Пиери, М.Паш, В.Ф.Каган) евклид геометриясының жекеленген бөліктеріне енгізе

42

 

бастады. Кейінірек Давид Гильберт (1862-1943) геометрия аксиомаларының толық жүйесін құруды жүзеге асырды. Атап айтқанда Д.Гильберттщ "I еометрия негіздемелері" деп аталатын жүмысы дүние жүзінің көптеген елдерінде мектеп геометриясы курсын құруға негіз болды.

1918 ж. белгілі математик  Г.Вейльдің (1885-1955 ж.) евклид геометриясының "векторлық" деп аталатын негіздемесі ұсынылды. Вейль аксиоматикасы евклидтік (нүктелік) кеңістіктің теориясын сызықтық алгебра тіліне аударады. Бұл теоремалардың дәлелдемелерін алгоритмдеуді жүзеге асыруға мүмкіндік берді және геометрияны оқып-үйренудің жаңа "патшалық жолын" ашты. Н. Бурбакидің жүмыстарына байланысты математиканы "алгебраизациялау" қозғалысы пайда болды.

Бұл Вейль аксиоматикасы негізінде құрылған п өлшемді геометрияның ерекше ролін мүмкін болатын ғылыми қолданулар тарапынан ғана емес, сонымен қатар орта мектептің оку пәні ретіндегі Евклид - Гильберт геометриясын осы геометриямен ауыстыру мүмкіндігі тарапынан бағалауға алып келді.

Оқушыларын стерометрия курсын (планометрияны жалпылау) Вейль аксиоматикасы негізінде оқып-үйренуге дайындау мақсатын көздеген В.Г.Болтянский мен И.М.Ягломның эксперименттік оқулықтары, сондай-ақ стеореометрия курсын Г.Вейль аксиоматикасына жақындатылған аксиоматика негізінде құрудың варианттарының бірін қамтитын Н.М.Рогаиский мен А.А.Столярдың оқулығы шығарылды.

Информация о работе Математикалық ұғымдар және оларды қалыптастыру процесі