Критерий устойчивости Гурвица

Автор работы: Пользователь скрыл имя, 06 Июня 2013 в 22:49, курсовая работа

Краткое описание

Учение о подобии и моделировании начало создаваться более 400 лет тому назад. В середине XV в. обоснованием методов моделирования занимался Леонардо да Винчи: он предпринял попытку вывести общие закономерности подобия, использовал механическое и геометрическое подобие при анализе ситуаций в рассматриваемых им примерах. Он использовал понятие аналогии и обращал внимание на необходимость экспериментальной проверки результатов аналогичных рассуждений, на важность опыта, соотношения опыта и теории, их роли в познании.

Прикрепленные файлы: 1 файл

магистр.doc

— 269.50 Кб (Скачать документ)

1.Экономико-математическое  моделирование

Учение о  подобии и моделировании начало создаваться более 400 лет тому назад. В середине XV в. обоснованием методов моделирования занимался Леонардо да Винчи: он предпринял попытку вывести общие закономерности подобия, использовал механическое и геометрическое подобие при анализе ситуаций в рассматриваемых им примерах. Он использовал понятие аналогии и обращал внимание на необходимость экспериментальной проверки результатов аналогичных рассуждений, на важность опыта, соотношения опыта и теории, их роли в познании.

Идеи Леонардо да Винчи о механическом подобии  в XVII веке развил Галилей, они использовались при построении галер в Венеции.

В 1679 г. Мариотт использовал теорию механического подобия в трактате о соударяющихся телах.

Первые строгие  научные формулировки условий подобия  и уточнения самого понятия подобия  были даны в конце XVII века И. Ньютоном в «Математических началах натуральной философии».

В 1775–76 гг. И.П. Кулибин использовал статическое подобие в опытах с моделями моста через Неву пролетом 300 м. Модели были деревянные, в 1/10 натуральной величины и весом свыше 5 т. Расчеты Кулибина были проверены и одобрены Л. Эйлером.

В настоящее время  процессы принятия решений в экономике  опираются на достаточно широкий круг экономико-математических методов и моделей. Ни одно серьёзное решение, затрагивающее управление деятельностью отраслей и предприятий, распределения ресурсов, изучение рыночной конъюнктуры, прогнозирование, планирование и т.п., не осуществляется без предварительного математического исследования конкретного процесса или его частей.

Характерной особенностью научно-технического прогресса в  развитых странах является возрастание  роли экономической науки. Экономика  выдвигается на первый план именно потому, что она в решающей степени определяет эффективность и приоритетность направлений научно-технического прогресса раскрывает широкие пути реализации экономически выгодных достижений.

Применение  математики в экономической науке, дало толчок в развитии как самой экономической науке, так и прикладной математике, в части методов экономико-математической модели. Пословица говорит: «Семь раз отмерь – Один раз отрежь». Использование моделей есть время, силы, материальные средства. Кроме того, расчёты по моделям противостоят волевым решениям, поскольку позволяют заранее оценить последствия каждого решения, отбросить недопустимые варианты и рекомендовать наиболее удачные.

На всех уровнях  управления, во всех отраслях используются методы экономико-математического  моделирования.

1.1Основные  понятия и типы моделей. Их  классификация

В процессе исследования объекта часто бывает нецелесообразно  или даже невозможно иметь дело непосредственно  с этим объектом. Удобнее бывает заменить его другим объектом, подобным данному в тех аспектах, которые важны в данном исследовании. В общем виде модель можно определить как условный образ реального объекта (процессов), который создается для более глубокого изучения действительности. Метод исследования, базирующийся на разработке и использовании моделей, называется моделированием. Необходимость моделирования обусловлена сложностью, а порой и невозможностью прямого изучения реального объекта (процессов). Значительно доступнее создавать и изучать прообразы реальных объектов (процессов), т.е. модели. Можно сказать, что теоретическое знание о чем-либо, как правило, представляет собой совокупность различных моделей. Эти модели отражают существенные свойства реального объекта (процессов), хотя на самом деле действительность значительно содержательнее и богаче.

Модель - это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию об этом объекте.

Моделирование — метод научного исследования явлений, процессов, объектов, устройств или систем (обобщенно – объектов исследований), основанный на построении и изучении моделей с целью получения новых знаний, совершенствования характеристик объектов исследований или управления ими. Модель — материальный объект или образ (мысленный или условный: гипотеза, идея, абстракция, изображение, описание, схема, формула, чертеж, план, карта, блок-схема алгоритма, ноты и т.п.), которые упрощенно отображают самые существенные свойства объекта исследования. Любая модель всегда проще реального объекта и отображает лишь часть его самых существенных черт, основных элементов и связей. По этой причине для одного объекта исследования существует множество различных моделей.

Дадим определения  еще нескольким важным понятиям: микроуровень, макроуровень и метауровень моделирования. Метауровень моделирования — степень детализации описания крупномасштабных объектов исследования, характеризующаяся наименее подробным рассмотрением процессов, протекающих в самих объектах. Это позволяет в одном описании отразить взаимодействие многих элементов сложного объекта. На метауровне моделируются, например, процесс развития Вселенной, работа локальных и глобальных вычислительных сетей, городских телефонных сетей, энергосистем, транспортных систем. Моделирование на метауровне позволило наглядно подтвердить справедливость физических законов, сформулированных Исааком Ньютоном и Альбертом Эйнштейном. Исследователи из Дарэмского университета (Великобритания) с помощью компьютерной программы имитировали процесс саморазвития нашего мира, начиная с Большого взрыва. В качестве законов эволюции использовались современные научные представления теории относительности, гравитации и другие теории. В процессе моделирования первоначально однородная Вселенная начала развиваться и, в конце концов, пришла к тому виду, который мы наблюдаем сейчас. Макроуровень моделирования — степень детализации описания объектов, характерной особенностью которой является рассмотрение физических процессов, протекающих в непрерывном времени и дискретном пространстве. Например, макроуровень описания радиоэлектронной аппаратуры — схемотехнический уровень. На этом уровне рассматриваются радиоэлектронные схемы, состоящие из таких дискретных элементов, как транзисторы, диоды, резисторы, конденсаторы, триггеры, логические элементы и т. п. Микроуровень моделирования — степень детализации описания объектов, характерной особенностью которой является рассмотрение физических процессов, протекающих в непрерывном пространстве (сплошных средах) и непрерывном времени. Фазовыми переменными при моделировании на микроуровне являются поля напряжений и деформаций в деталях механических конструкций, электромагнитные поля в электропроводящих средах, поля температур нагретых деталей.

Математическая Модель — описание объекта исследования, выполненное с помощью математической символики. Для составления ММ можно использовать любые математические средства — дифференциальное и интегральное исчисления, регрессионный анализ, теорию вероятностей, математическую статистику и т. д. Математическая модель представляет собой совокупность формул, уравнений, неравенств, логических условий и т.д. Использованные в ММ математические соотношения определяют процесс изменения состояния объекта исследования в зависимости от его параметров, входных сигналов, начальных условий и времени. По существу, вся математика создана для формирования математических моделей.

На сегодняшний  день общепризнанной единой классификации  моделей не существует. Однако из множества  моделей можно выделить словесные, графические, физические, экономико-математические и некоторые другие типы моделей.

Экономико-математические модели - это модели экономических объектов или процессов, при описании которых используются математические средства. Цели их создания разнообразны: они строятся для анализа тех или иных предпосылок и положений экономической теории, логического обоснования экономических закономерностей, обработки и приведения в систему эмпирических данных. В практическом плане экономико-математические модели используются как инструмент прогноза, планирования, управления и совершенствования различных сторон экономической деятельности общества.

Экономико-математические модели отражают наиболее существенные свойства реального объекта или  процесса с помощью системы уравнений. Единой классификации экономико-математических моделей не существует, хотя можно выделить наиболее значимые их группы в зависимости от признака классификации.

По  целевому назначению модели делятся на:

·Теоретико-аналитические (используются в исследовании общих свойств и закономерностей экономических процессов);

·Прикладные (применяются  в решении конкретных экономических  задач, таких как задачи экономического анализа, прогнозирования, управления).

По  учету фактора времени модели подразделяются на:

·Динамические (описывают экономическую систему  в развитии);

·Статистические (экономическая система описана  в статистике, применительно к  одному определенному моменту времени; это как бы снимок, срез, фрагмент динамической системы в какой-то момент времени).

По  длительности рассматриваемого периода  времени различают модели:

·Краткосрочного прогнозирования или планирования (до года);

·Среднесрочного прогнозирования или планирования (до 5 лет);

·Долгосрочного  прогнозирования или планирования (более 5 лет).

По  цели создания и применения различают модели:

·Балансовые;

·Эконометрические;

·Оптимизационные;

·Сетевые;

·Систем массового  обслуживания;

·Имитационные (экспертные).

В балансовых моделях отражается требование соответствия наличия ресурсов и их использования.

Параметры эконометрических моделей оцениваются с помощью методов математической статистики. Наиболее распространены модели, представляющие собой системы регрессионных уравнений. В данных уравнениях отражается зависимость эндогенных (зависимых) переменных от экзогенных (независимых) переменных. Данная зависимость в основном выражается через тренд (длительную тенденцию) основных показателей моделируемой экономической системы. Эконометрические модели используются для анализа и прогнозирования конкретных экономических процессов с использованием реальной статистической информации.

Оптимизационные модели позволяют найти из множества возможных (альтернативных) вариантов наилучший вариант производства, распределения или потребления. Ограниченные ресурсы при этом будут использованы наилучшим образом для достижения поставленной цели.

Сетевые модели наиболее широко используются в управлении проектами. Сетевая модель отображает комплекс работ (операций) и событий, и их взаимосвязь во времени. Обычно сетевая модель предназначена для выполнения работ в такой последовательности, чтобы сроки выполнения проекта были минимальными. В этом случае ставится задача нахождения критического пути. Однако существуют и такие сетевые модели, которые ориентированы не на критерий времени, а, например, на минимизацию стоимости работ.

Модели систем массового обслуживания создаются для минимизации затрат времени на ожидание в очереди и времени простоев каналов обслуживания.

Имитационная модель, наряду с машинными решениями, содержит блоки, где решения принимаются человеком (экспертом). Вместо непосредственного участия человека в принятии решений может выступать база знаний. В этом случае персональный компьютер, специализированное программное обеспечение, база данных и база знаний образуют экспертную систему. Экспертная система предназначена для решения одной или ряда задач методом имитации действий человека, эксперта в данной области.

 

По  учету фактора неопределенности модели подразделяются на:

·Детерминированные (с однозначно определенными результатами);

·Стохастические (вероятностные; с различными, вероятностными результатами).

По  типу математического аппарата различают модели:

·Линейного  программирования (оптимальный план достигается в крайней точке  области изменения переменных величин системы ограничений);

·Нелинейного  программирования ( оптимальных значений целевой функции может быть несколько);

·Корреляционно-регрессионные;

·Матричные;

·Сетевые;

·Теории игр;

·Теории массового  обслуживания и т.д.

С развитием  экономико-математических исследований проблема классификации применяемых моделей усложняется. Наряду с появлением новых типов моделей и новых признаков их классификации, осуществляется процесс интеграции моделей разных типов в более сложные модельные конструкции.

 

1.2Экономико-математические методы

Термин моделирование  означает исследование объектов с помощью  их моделей. В более широком смысле слова моделирование понимается как процесс, включающий в себя не только исследование, но и разработку модели(рис.1.1). 
Экспериментальное исследование реальных объектов на их моделях называется модельным экспериментом. В модельном эксперименте модель выступает одновременно и средством, и объектом исследования. При этом модель может применяться как для замещения самого объекта, так и быть замещением некоторых внешних условий и (или) систем, связанных с исследуемым объектом в реальном мире. 
Чтобы выполнять свои функции, модель должна удовлетворять двум основным требованиям: быть достаточно простой, чтобы в отличие от оригинала ее можно было исследовать, экспериментировать с ей; быть подобной объекту-оригиналу, с необходимой полнотой воспроизводить его свойства.  

 
Эти требования в некоторой степени  противоречат друг другу. Действительно, наиболее подобной оригиналу будет  модель, которая в точности воспроизводит его состав и структуру. Однако, в этом случае модель не станет упрощением объекта-оригинала. Поэтому подобие должно быть адекватным решаемой задаче. Так, если решается задача разработки оптимального плана выпуска продукции, нет смысла строить макет предприятия в масштабе один к одному. Для таких задач используются специальные математические модели, которые позволяют не только разработать план выпуска, но и определить условия, для которых он будет оптимальным.

Как и всякое моделирование, экономико-математическое моделирование основывается на принципе аналогии, т.е. возможности изучения объекта посредством построения и рассмотрения другого, подобного ему, но более простого и доступного объекта, его модели.

Информация о работе Критерий устойчивости Гурвица