Лекции по «Коллоидной химии»

Автор работы: Пользователь скрыл имя, 30 Января 2014 в 15:14, курс лекций

Краткое описание

Современная коллоидная химия играет огромную роль во всей материальной культуре человечества, поскольку материальная основа современной цивилизации и самого существования человека связаны с коллоидными системами.
Учение о растворах является одним из основных в современной химии и при изучении химии растворам уделяется большое внимание. Между тем, молекулярные и ионные растворы встречаются в природе и технике реже, чем коллоидные растворы.

Прикрепленные файлы: 1 файл

Конспект лекций по дисциплине «Коллоидная химия» для студентов х.doc

— 9.60 Мб (Скачать документ)

Капля жидкости на поверхности твердого тела может вести себя различно (рис. 6.2):

Рис. 6.2. Контактные углы, образованные жидкостями на поверхности твердого тела:

S - твердое тело;

L - капля жидкости;

- краевой угол смачивания

 

Если жидкость смачивает твердое  тело, то она стремится растечься по поверхности.

Контактный угол при этом равен 0 (рис. 6.2а), т.е. при полном смачивании q=0, а cos q=1.

Краевой угол q является мерой смачивания. Он определяется как угол между твердой поверхностью и касательной в точке соприкосновения трех фаз. Угол q отсчитывается в сторону жидкой фазы.

В случае жидкости L2 (рис. 6.2б) тенденция к растеканию по поверхности менее выражена  и угол 0<q<900.

В третьем примере жидкость не смачивает  поверхность (рис. 6.2в) и контактный угол превышает 900. Жидкость стремится уменьшить площадь контакта с твердым телом.

В состоянии равновесия:

Величина    носит название адгезионного натяжения.

Уравнение известно как соотношение Юнга-Дюпре, которое устанавливает условие равновесия сил, из которого можно определить ПН твердого тела или межфазное натяжение:

Поверхностные натяжения рассмотрены  как силы, приложенные перпендикулярно  к единице длины периметра смачивания и действующие по касательной к соответствующим поверхностям (рис. 6.3).

Рис. 6.3. Действие трех сил (пограничных) поверхностного натяжения.

Смачиванию благоприятствует низкая свободная энергия поверхности  раздела, высокая поверхностная энергия твердого тела и низкая свободная энергия поверхности жидкости.

  и определяются экспериментально, а и расчетным путем.

Величины  и обычно неизвестны и чтобы их определить рассматривают молекулярные силы и их работу, определяющую значения всех и .

При этом различают силы когезии (слипания) и адгезии (прилипания).

Первые действуют между молекулами внутри фазы, вторые – в разных фазах.

Работа когезии  определяется как сила, необходимая для разрыва однородной объемной фазы, отнесенная к единице площади разрыва.

Поскольку при этом образуется две новых поверхности жидкости, то:

Работа адгезии  , также относимая к единице площади, определяется как работа разрыва межфазного поверхностного слоя. Затрачивается она на образование двух новых поверхностей, при этом исчезает исходная межфазная граница:

(Свободная энергия уменьшается  за счет работы сил взаимодействия).

Из этих двух уравнений следует  уравнение, известное как уравнение Дюпре:

По этому уравнению вычисляют , экспериментально определяя и . Оно показывает, что чем выше адгезия, тем больше , т.е. смачивание.

Таким образом силы межфазного взаимодействия (адгезионные силы) стремятся растянуть каплю, а силы когезии стягивают каплю, препятствуя растеканию.

Определение (поверхностного натяжения твердого тела) представляет определенные трудности. Зисман ввел понятие о - критическом ПН смачивания, позволяющего оценить ПН твердого тела.

Эта величина определяется как значение в точке пересечения графика зависимости от с горизонтальной линией, соответствующей  =1.

Жидкость с  < растекается по поверхности твердого тела.

Численно  приравнивают к , хотя, по мнению Липатова Ю.С. для этого нет достаточных оснований.

 

Рис. 6.4. Определение

по Зисману.

Известно эмпирическое соотношение, которое соблюдается для многих систем – это правило Антонова:

Связь между величинами постулируется в уравнении:

где Ф – эмпирический параметр, который можно рассчитать теоретически из молекулярных свойств через константы Гамахера и потенциал Леннарда-Джонса.

 

Адсорбция. Изотерма адсорбции. Уравнение Гиббса.

ПН растворов обычно отличается от ПН растворителя.

Растворенное вещество может не изменять , повышать и понижать его.

Поверхностная свободная энергия  стремится к минимуму, поэтому при повышении вещество будет удаляться с поверхности внутрь жидкости. Полному удалению молекул растворенного вещества с поверхности препятствует тепловое движение, под действием которого вещество стремится к равномерному распределению в объеме.

Под влиянием этих двух факторов устанавливается равновесие, в результате которого концентрация вещества в поверхностном слое уменьшается по сравнению с концентрацией в объеме.

Если растворенное вещество снижает  , то концентрация его в поверхностном слое увеличивается.

Самопроизвольное изменение концентрации вещества в поверхностном слое, отнесенное к единице поверхности, называется адсорбцией, обозначается через Г и выражается в кмоль/м2, или моль/см2.

Если Г>0 адсорбцию называют положительной, если Г<0 - отрицательной.

Если растворенное вещество не изменяет , адсорбция Г=0 и вещество равномерно распределено между поверхностным слоем и объемом.

Простое термодинамическое соотношение  между поверхностной концентрацией Г и изменением ПН с активной концентрацией растворяемого вещества  было выведено Гиббсом:

где - активность раствора;

      - универсальная газовая постоянная;

      - абсолютная температура.

 

Для разбавленных растворов активность заменяют концентрацией С:

Из уравнения следует, что только те вещества показывают положительную адсорбцию, с повышением концентрации которых ПН понижается, <0.

Если  >0, концентрация растворенного вещества в поверхностном слое будет уменьшаться: Г<0.

Вещества, повышающие ПН, называются отрицательно поверхностно-активными веществами (инактивными, ими являются неорганические соли).

Вещества, понижающие ПН называют поверхностно-активными (ПАВ) (см. стр. 98-102).

К ПАВ относятся органические вещества, молекулы которых построены из участков с резко различающимися свойствами. Одна часть молекулы полярная, другая – неполярная (углеводородный радикал).

Полярная: -OH, -COOH, -SO3Na, -SO3H, -NH2, -SO2H.

Полярная часть гидрофильна, неполярная – гидрофобна.

ПАВ характеризуются величиной  ГЛБ (гидрофильно-липофильного баланса).

Величина  , согласно Ребиндеру, является мерой способности вещества понижать поверхностную энергию, она называется поверхностной активностью и обозначается . Ее размерность – Н/м.

В гомологическом ряду жирных кислот, спиртов и аминов понижение   тем больше, чем длиннее цепь.

Согласно правилу Дюкло-Траубе, при удлинении цепи на группу СН2 поверхностная активность возрастает на границе раствор-воздух в 3-3,5 раз.

Для определения этой характеристики строят зависимость . Используя уравнение Гиббса, строят зависимость .

 

 

 

 

Построение  изотермы адсорбции и нахождение величин 

.

Изотерма адсорбции описывается  уравнением Ленгмюра:

где – предельная концентрация вещества, адсорбиро- 

              ванного на 1 м2 поверхности, кмоль/м2;

  - константа равновесия, равная отношению констант скоростей процессов десорбции и адсорбции.

Зная Г можно рассчитать площадь S, приходящуюся на 1 молекулу.

Число адсорбированных молекул  на 1 м2 составляет:

Отсюда:

С увеличением Г величина S уменьшается и при достигает минимального значения :

Пользуясь вычисляют толщину насыщенного поверхностного слоя:

- молекулярная масса;

      - плотность адсорбированного вещества.

 

Строят изотерму ПН (зависимость  от концентрации ПАВ).

По изотерме ПН  рассчитывают Г  по уравнению Гиббса.

Для этого к кривой в нескольких точках проводят касательные до пересечения их с осью ординат, проводя также параллельные прямые до пересечения с осью ординат (рис. 6.5). Из треугольника АВD находят или . Находят несколько значений для C1, C2, C3,…и строят зависимость .

Рис. 6.5. Построение изотермы адсорбции по изотерме

 поверхностного натяжения.

 

Каждой концентрации С соответствует  отрезок Z на оси ординат.

Длина отрезка, выраженная в единицах ПН равна: , так как согласно построению .

Подставив полученные значения Z в уравнение:

получим:

Используя  Z  для ряда концентраций, рассчитывают адсорбцию Г.

Строят изотерму адсорбции, откладывая по оси абсцисс С, а по оси ординат Г.

Где сложно провести касательную (в  интервале концентраций 0,2-0,15 моль/л) рассчитывают изменение: и и определяют  для средней концентрации 0,1.

Данные заносят в таблицу:

 

         

 

Значение  определяют графически по уравнению Лэнгмюра, преобразовав его в уравнение прямой линии (рис. 6.6):

 

 

Рис. 6.6. График уравнения Ленгмюра в прямолинейных координатах.

 

Угол  на рис. 6.6 позволяет определить : .

Отрезок .

Из этого уравнения определяем .

Из уравнения    вычисляем и из уравнения .

 

 

 

 

 

Лекция 7. Поверхностные явления. Адсорбция

 

Основные определения.

Изотерма адсорбции. Причины адсорбции.

Теории адсорбции.

Частные случаи адсорбции.

 

Одним из основных поверхностных явлений  в коллоидных системах, обладающих поверхностью, является адсорбция. С адсорбцией связаны коагуляция, пептизация, изменение знака заряда частиц и другие явления.

Адсорбцией называется концентрирование газообразного или растворенного вещества на поверхности раздела фаз.

Различают понятия: сорбция, адсорбция, абсорбция.

Сорбция - поглощение каким-либо веществом других веществ.

Адсорбция - протекание процесса сорбции только на поверхности, увеличивается концентрация вещества на границе раздела фаз.

Абсорбция - поглощение вещества всем объемом другого вещества. При абсорбции поглощаемое вещество диффундирует вглубь абсорбента

Вещество, на поверхности которого идет адсорбция, называется адсорбентом, т.е. адсорбент - это вещество, адсорбирующее другое вещество.

Вещество, которое адсорбируется, называется адсорбтивом или адсорбатом.

Адсорбция Г выражается количеством адсорбтива (адсорбата) в молях, адсорбировавшегося на поверхности адсорбента, площадью 1 м2: (моль/м2) или (моль/кг)   - если площадь трудно рассчитать.

Для определения адсорбции необходимо найти экспериментально давление газа или количество адсорбтива в объеме, в котором происходит адсорбция, до и после адсорбции. Чаще всего адсорбцию определяют по привесу адсорбента.

Общую термодинамическую  теорию адсорбции разработал в конце XIX века Гиббс. В XX веке адсорбцию исследовали: Лэнгмюр, Поляни, Брунауэр, Гурович, Шилов, Дубинин и др.

Различают адсорбцию физическую и  химическую.

Физическая адсорбция обеспечивается силами Ван-дер-Ваальса, протекает самопроизвольно, молекулы адсорбтива могут перемещаться по поверхности (нелокализованная адсорбция), характеризуется обратимостью, отсутствием стехиометрических соотношений, уменьшением адсорбции при повышении температуры, сопровождается десорбцией. Процессы адсорбции и десорбции находятся в равновесии: адсорбция « десорбция.

Химическая адсорбция или хемосорбция обусловлена химическим взаимодействием адсорбента с адсорбтивом. Молекулы адсорбтива не могут перемещаться по поверхности адсорбента. Необратима. Тепловой эффект близок к энергии образования химических соединений. Повышение температуры способствует хемосорбции.

Информация о работе Лекции по «Коллоидной химии»