Лекции по «Коллоидной химии»

Автор работы: Пользователь скрыл имя, 30 Января 2014 в 15:14, курс лекций

Краткое описание

Современная коллоидная химия играет огромную роль во всей материальной культуре человечества, поскольку материальная основа современной цивилизации и самого существования человека связаны с коллоидными системами.
Учение о растворах является одним из основных в современной химии и при изучении химии растворам уделяется большое внимание. Между тем, молекулярные и ионные растворы встречаются в природе и технике реже, чем коллоидные растворы.

Прикрепленные файлы: 1 файл

Конспект лекций по дисциплине «Коллоидная химия» для студентов х.doc

— 9.60 Мб (Скачать документ)

Причиной набухания является диффузия низкомолекулярного растворителя в высокомолекулярное вещество. Между макромолекулами полимера обычно имеются небольшие пространства, размер которых соизмерим с размером молекул растворителя. Благодаря этому молекулы низкомолекулярной жидкости достаточно быстро проникают в пространства между макромолекулами, раздвигая молекулярные цепи. Если макромолекулы полимера гибкие, то благодаря их тепловому движения диффузия растворителя облегчается. Полимеры с жесткими молекулярными цепями набухают значительно хуже.

Таким образом, набухание можно  представить как процесс одностороннего смешивания, при котором молекулы низкомолекулярного вещества, благодаря большой подвижности, проникают в пространство между молекулами высокомолекулярного вещества.

Для многих систем набухание включает не только диффузию жидкости в полимер, но и сольватацию макромолекул. Обычно при взаимодействии высокомолекулярного вещества с растворителем сольватируется не вся макромолекула, а отдельные ее группы.

У полимеров, макромолекулы которых состоят из полярных и неполярных групп, сольватируются полярные группы. Если же растворитель неполярен, то сольватируются неполярные группы. В зависимости от того, каких групп в полимере больше, он будет набухать в полярном или неполярном растворителе.

Обычно набухание – избирательное  явление, т.е. полимер набухает в жидкостях, близких к нему по химическому строению. Так углеводородные полимеры типа каучуков набухают в неполярных жидкостях – бензине, бензоле. Полимеры, в состав молекул которых входят полярные группы, например, белки, крахмал, набухают в полярных растворителях (воде, спиртах).

Процесс набухания можно разбить  на две основные стадии. На первой стадии набухания низкомолекулярный растворитель, диффундируя в высокомолекулярное вещество, сольватирует его макромолекулы. Образование сольватной оболочки молекулы полимера сопровождается выделением тепла, поэтому первая стадия набухания характеризуется положительным тепловым эффектом.

Теплота набухания зависит от природы  полимера и растворителя. Она максимальная при набухании в воде полимеров, содержащих большое число полярных групп. При набухании неполярного полимера в неполярной жидкости тепловой эффект очень мал.

Молекулы растворителя в сольватной оболочке плотно упакованы благодаря ориентации их около сольватируемых групп макромолекулы, и, следовательно, растворитель в сольватной оболочке имеет более высокую плотность. В результате сжатия растворителя в сольватных оболочках, на первой стадии набухания, наряду с увеличением объема полимера, наблюдается уменьшение суммарного объема всей системы. Сумма объемов полимера до набухания и поглощаемой полимером жидкости больше, чем объем набухшего полимера. Такое явление уменьшения объема системы при набухании вещества в растворителе называется внутренним сжатием или контракцией.

На второй стадии набухания, протекающей  без теплового эффекта, а иногда с отрицательным тепловым эффектом, наблюдается обычно основное увеличение объема полимера. На этой стадии набухания низкомолекулярный растворитель диффундирует в полимер и происходит смешивание больших и гибких макромолекул с молекулами растворителя. Из-за односторонней диффузии, характеризующей эту стадию, ее иногда называют осмотической.

На второй стадии набухания может  происходить переход некоторого числа макромолекул в низкомолекулярный растворитель. Ограниченное набухание заканчивается на второй стадии, неограниченное набухание приводит к растворению полимера.

Стадии набухания представлены на рис. 8.1.

На первой стадии набухания (рис. 8.1б) при увеличении объема полимера объем всей системы несколько уменьшается (контракция). На второй стадии объем набухшего полимера по сравнению с первоначальным объемом увеличивается (рис. 8.1в), но при этом возможно и частичное растворение полимера (рис. 8.1г).

 

 

 

Рис. 8.1. Стадии ограниченного набухания:

а – система полимер-растворитель до набухания;

б – первая стадия набухания;

в – вторая стадия набухания;

г – вторая стадия набухания с  частичным растворением полимера.   

 

Набухание полимера характеризуется  степенью набухания:

где - масса полимера до и после набухания.

 

Степень набухания зависит от прочности  межмолекулярных связей в полимере и энергии сольватации. Если для линейного полимера работа, которую надо затратить на разрыв связей слабых ван-дер-ваальсовых сил, меньше, чем энергия сольватации, то набухание будет неограниченным. Если в полимере есть поперечные связи, то энергии сольватации может быть недостаточно для их разрыва. Тогда набухание будет ограниченным и тем меньшим, чем прочнее межмолекулярные связи. Так, натуральный каучук (линейный полимер) неограниченно набухает (растворяется) в бензине, резина (вулканизированный каучук) набухает ограниченно, эбонит (каучук+50% серы) совершенно не набухает.

На степень ограниченного набухания влияет также температура. Если набухание ограничивается только первой, сольватационной стадией, являющейся экзотермическим процессом, то степень набухания с повышением температуры уменьшается. Вторая стадия набухания может быть эндотермическим процессом, тогда степень набухания должна увеличиваться с повышением температуры.

При набухании высокомолекулярного  вещества в каком-либо ограниченном пространстве, препятствующем увеличению объема, возникает давление набухания, которое может достигать на начальной стадии нескольких мегапаскалей. Это давление может стать причиной разрыва емкостей, заполненных набухающими материалами. При хранении и перевозке многих пищевых продуктов, таких как зерно, крупа, мука, необходимо учитывать возможность их набухания.

Набухание имеет очень большое  значение для многих технологических процессов в пищевой промышленности: в хлебопекарском производстве, производстве мучных кондитерских изделий.

Набухание – обязательный процесс, протекающий при замачивании зерна в производстве солода, являющегося основным сырьем пивоваренных и квасоваренных заводов.

В производстве кукурузного крахмала осуществляется замачивание кукурузного зерна с целью размягчения зерна и создания оптимальных условий для его измельчения и последующего выделения крахмала. На последней стадии замачивания зерно поглощает до 45% воды и увеличивается в объеме.

 

 

Осмотическое давление и вязкость растворов

 полимеров

Наличие в растворах высокомолекулярных соединений вытянутых гибких макромолекул влияет на такие свойства растворов, как осмотическое давление и вязкость.

Осмотическое давление растворов  низкомолекулярных веществ подчиняется закону Вант-Гоффа, который может быть записан в такой форме:

где – массовая концентрация раствора;

       - масса одного моля растворенного вещества.

 

Уравнение для осмотического давления растворов высокомолекулярных соединений содержит дополнительный член, учитывающий взаимодействие гибких макромолекул в растворе друг с другом и с растворителем:

где – постоянная, зависящая от природы растворителя и растворенного вещества.

 

Разделив правую и левую  часть уравнения на , получим:

Графическая зависимость величины от имеет вид прямой, не проходящей через начало координат (рис. 8.2). Отрезок, отсекаемый этой прямой на оси ординат, равен . На изучении зависимости осмотического давления от концентрации раствора основан один из самых распространенных методов определения молекулярной массы высокомолекулярных соединений. По этому методу измеряют осмотическое давление раствора полимера при нескольких массовых концентрациях, строят графическую зависимость от , по графику находят и рассчитывают . Определяемая молекулярная масса полимера будет средней величиной.

По вязкости растворы высокомолекулярных веществ резко отличаются от растворов низкомолекулярных веществ и золей. При одной и той же концентрации вязкость растворов полимеров значительно больше вязкости растворов низкомолекулярных веществ, и, с увеличением концентрации, она быстро возрастает (рис. 8.3).

 

 

 

 

 

 

 

 

 

 

 

Рис. 8.2. Зависимость 

от концентрации
раствора

полимера.

 

 

 

 

 

 

          

 

 

 

             

Рис. 8.3. Зависимость вязкости раствора от его 

концентрации:

    1. - для раствора низкомолекулярного вещества;

2 - для золя; 3 - для раствора полимера.

 

Такая высокая вязкость растворов  высокомолекулярных соединений, даже при низкой концентрации, объясняется наличием в системе длинных гибких макромолекул. Вязкость жидкости можно определить как сопротивление жидкости передвижению одного ее слоя относительно другого. Громадные, вытянутые и гибкие макромолекулы увеличивают силу трения между слоями, т.е. увеличивают вязкость.

Для характеристики вязкости очень  разбавленных растворов полимеров, в которых макромолекулы не взаимодействуют друг с другом, Штаудингером предложено следующее уравнение:

где – вязкость раствора и растворителя соответственно;

        - удельная вязкость раствора;

          - константа, имеющая определенное значение для каждого полимергомологического ряда. Константу К определяют, измеряя молекулярную массу наиболее низкомолекулярных членов данного полимергомологического ряда каким-нибудь другим независимым методом, например, криоскопическим;

        - молекулярная масса полимера;

          - концентрация раствора, выраженная в «основных молях» на литр. «Основной моль» - число граммов полимера, равное молекулярной массе мономера, из которого построена макромолекула.

 

Согласно уравнению Штаудингера  вязкость раствора прямо пропорциональна молекулярной массе растворенного полимера и концентрации раствора. На этой зависимости основан один из методов определения молекулярной массы полимеров.

Вязкость раствора полимера зависит  от природы растворителя.

Чем лучше полимер растворяется в данном растворителе, тем более вытянуты макромолекулы и тем больше вязкость раствора.

С увеличением концентрации вязкость растворов полимеров возрастает непропорционально, и течение концентрированных растворов уже не подчиняется законам Ньютона и Пуазейля. Это проявляется в том, что вязкость этих растворов не является постоянной, а уменьшается с увеличением скорости течения растворов.

При увеличении скорости течения разбавленных растворов полимеров гибкие макромолекулы распрямляются и ориентируются по направлению течения. В результате снижается гидродинамическое сопротивление движущейся жидкости и уменьшается вязкость раствора.

В растворах достаточно высокой  концентрации появляются ассоциаты макромолекул, также имеющие вытянутую форму. Эти ассоциаты и макромолекулы, взаимодействуя друг с другом, могут образовывать пространственные структуры, затрудняющие течение. При увеличении скорости течения эти структуры разрушаются и вязкость растворов полимеров снижается. Разрушение сравнительно непрочных полимерных структур можно вызвать и чисто механическим путем – встряхиванием, перемешиванием.

Увеличение концентрации полимера в растворе может привести к образованию настолько прочной структуры, что раствор потеряет текучесть, т. е. превратится в студень.

Повышение температуры увеличивает  интенсивность молекулярного движения, препятствует образованию ассоциатов и структур и, следовательно, снижает вязкость растворов полимеров.  

 

 

Лекция 9. Застудневание растворов и студни полимеров

 

Классификация студней. Условия их образования.

Механизм процессов гелеобразования  и структура полимерных гелей.

Реология гелей. Реологические  теории.

 

В отделочном производстве широко используются полимеры, растворы которых способны к застудневанию. Эти системы используются в печатании текстильных материалов для приготовления печатных красок.

Застудневание полимерного раствора можно охарактеризовать как процесс непрерывного увеличения вязкости, сопровождающийся постепенным нарастанием эластических свойств. Застудневание приводит к затвердению системы и переходу в однородную нетекучую эластичную массу – студень или гель – в результате образования структурной сетки полимера, пронизывающей весь объем системы и удерживающей растворитель.

Основной  причиной застудневания в полимерных системах является усиление взаимодействия между макромолекулами полимера, находящимися в растворе  или их агрегатами, вследствие частичного понижения растворимости полимера (или каких-либо его функциональных групп) в растворителе.

Застудневание может быть вызвано либо изменением температуры, либо изменением состава растворителя при данной температуре, т.е. введением осадителя.

Важное  условие застудневания  - достижение критической концентрации раствора, характерной для каждой пары полимер-растворитель.

Застудневание не является конечной стадией изменения системы во времени – оно является кинетическим процессом и развивается до наступления равновесного состояния, сопровождающегося разделением системы на две фазы: равновесный студень или гель постоянного состава и раствор полимера, находящийся в равновесии со студнем (синерезис студня). Если концентрация раствора полимера соответствует равновесной концентрации студня, застудневание не сопровождается синерезисом. Таково общее представление о застудневании полимеров.

Информация о работе Лекции по «Коллоидной химии»