Характеристика кристаллических решеток

Автор работы: Пользователь скрыл имя, 23 Июля 2013 в 21:16, реферат

Краткое описание

Материаловедение - прикладная наука о связи состава, строения и свойств материалов. Теоретической основой материаловедения являются соответствующие разделы физики и химии. Для конструкционных материалов основными свойствами являются:
- физические: плотность, теплопроводность, теплоемкость, электропроводность, магнитные свойства;
- химические: способность вступать в химические соединения, жаростойкость;
- механические: прочность, пластичность, твердость, упругость и вязкость.;
- технологические: жидкотекучесть, ковкость, обрабатываемость резанием;
- эксплуатационные: сопротивление коррозии, изнашиванию и усталости, жаропрочность, хладостойкость и др.

Прикрепленные файлы: 1 файл

1 Характеристика кристаллических решеток.doc

— 1.17 Мб (Скачать документ)

К электрическим характеристикам  проводниковых материалов можно  отнести: удельное сопротивление или обратную величину – удельную проводимость; контактную разность потенциалов и термоэлектродвижущую силу (термоЭДС); работу выхода электронов из металла.

Удельная проводимость выражается в сименсах на метр (См/м) и может быть определена по формуле: ,  где q – заряд электрона (1,6 ·10-19Кл); n0 – число свободных электронов в единице объема металла; λ – средняя длина свободного пробега электрона между двумя соударениями с узлами решетки; m – масса электрона; vт средняя скорость теплового движения свободного электрона.

Концентрация свободных  электронов и скорость их хаотического теплового движения для различных металлов при определнной температуре отличаются незначительно, поэтому удельная проводимость зависит в основном от средней длины свободного пробега электронов в проводнике. Тепловая скорость определяется структурой проводникового материала, так для чистых металлов с наиболее упорядоченной кристаллической решеткой удельное сопротивление минимально, а наличие примесей и дефектов в решетке приводит к увеличению ρ. Итак, удельное сопротивление проводников : ρ = ρтепл + ρост, где ρтепл – удельное сопротивление, обусловленное в основном тепловыми колебаниями решетки; ρост – удельное сопротивление, вызванное наличием дефектов в кристаллической решетке.

Характерная для металлов зависимость удельного сопротивления  от температуры приведена на рис.26.

Рис.26

 При температурах, превышающих температуру Дебая  Θ, которая для металлов равна  400 – 8000С, удельное сопротивление возрастает линейно и обусловлено в основном усилением тепловых колебаний решетки. В области низких (криогенных) температур удельное сопротивление почти не зависит от температуры и определяется только сопротивлением ρост.

Изменение удельного  сопротивления металлических проводников  с температурой принято характеризовать температурным коэффициентом удельного сопротивления ТК ρ или αρ-1). Если температура изменяется в узких пределах, то пользуются средним температурным коэффициентом удельного сопротивления:

 где ρ0 – удельное сопротивление при температуре Т0, принятой за начальную; ρ1 – то же при температуре Т1. Для металлов αρ составляет 4·10-3К-1, а для сплавов значительно меньше – 10-4 – 10-6 К-1.

Металлы и сплавы высокой  проводимости должны иметь достаточную прочность, пластичность,  коррозионную стойкость, хорошо свариваться и подвергаться пайке. Практическое применение имеют химически чистые металлы: медь, алюминий, серебро.

 Медь обладает целым рядом ценных технических свойств: малым удельным сопротивлением; достаточно высокой механической прочностью; удовлетворительной стойкостью к коррозии; хорошей обрабатываемостью (легко прокатывается в листы, ленты и протягивается в проволоку); хорошей способностью к пайке и сварке. Наименьшим удельным сопротивлением обладает химически чистая медь (бескислородная М00б удельное сопротивление 0,017 мкОм·м;  получают переплавом элетролитически очищенной меди в вакууме или переработкой катодной меди методами порошковой металлургии). Механические и электрические характеристики меди существенно зависят от ее состояния. Нпример, твердотянутая медь марки МТ имеет меньшую проводимость и относительное удлинение, но большую механическую прочность, чем отожженная медь марки ММ.

Для изделий с большей  прочностью используют латуни и бронзы с кадмием и бериллием.  

Алюминий  легко окисляется на воздухе, покрываясь при этом прочной оксидной пленкой, которая защищает металл от дальнейшего окисления и обусловливает его высокую коррозионную стойкость. Удельное электрическое сопротивление проводникового алюминия не должно превышать 0,028 мкОм·м, обладает высокой пластичностью.

Серебро обладает минимальным удельным сопротивлением 0,016 мкОм·м; невысокие прочность и твердость, но хорошая пластичность. По сравнению с другими благородными металлами (золотом, платиной) серебро имеет пониженную химическую стойкость, тенденцию диффундировать в материал подложки, на которой оно нанесено.

Припои - сплавы, используемые при пайке металлов. Кроме высокой проводимости должны обеспечивать небольшое переходное сопротивление (сопротивление контакта). Различают два типа припоев: для низкотемпературной пайки с температурой плавления до 4000 и для высокотемпературной пайки. Температура плавления припоя должна быть ниже, чем температура плавления металла, подвергаемого пайке, припой должен хорошо смачивать поверхность, и температурные коэффициенты линейного расширения металла и припоя должны быть близки. Используют припои на основе олова, свинца, цинка, серебра, (сплавы этих металлов образуют эвтектические смеси), имеющие хорошую проводимость и сопротивление которых мало отличается от сопротивления металлов, образующих сплав. Для низкотемпературной пайки применяют оловяно-свинцовые и оловяно-цинковые припои: ПОС 61(61% олова, эвтектический сплав, температура плавления 1830 ), ПОЦ-90 (90% олова, эвтектический сплав, температура плавления 1990). Для температур меньше 1000 используют сплавы висмута со свинцом, кадмием, оловом (не обеспечивают высокой прочности, сплавы с висмутом хрупкие). В качестве высокотемпературных используют медь, медноцинковые, меднофосфористые припои (ПМЦ-36, 36% меди). Очень технологичны серебряные припои, хорошая растворимость, смачиваемость, высокие механические свойства, температура плавления от 779 до 920 (серебро с медью).

Контактные материалы.  По принципу работы контакты подразделяются на: разрывные, скользящие и неподвижные.

К неподвижным контактам относятся цельнометаллические (сварные или паяные) зажимные (болтовые, винтовые) соединения. Цельнометаллические соединения должны отличаться не только механической прочностью, но и обеспечивать стабильный электрический контакт с малым переходным сопротивлением. Качество зажимного контакта определяется в основном контактным нажатием и способностью материала к пластической деформации. В связи с этим такие контактные поверхности целесообразно покрывать мягкими коррозионно-стойкими металлами (оловом, серебром, кадмием и др.).

Размыкающие контакты обеспечивают периодическое замыкание и размыкание электрической цепи. Более ответственная их функция предопределяет и более строгие требования к ним: устойчивость против коррозии, стойкость к свариванию и действию электрической эррозии, стойкость к действию сжимающих и ударных нагрузок, высокие проводимость и теплофизические свойства.

  В качестве контактных материалов для слаботочных размыкающих контактов кроме чистых тугоплавких металлов (вольфрама, молибдена) применяются благородные металлы (платина, золото, серебро), а также различные сплавы на их основе (золото-серебро, платина-рутений, платина-родий), металлокерамические композиции (например, Ag-CdO).

Сильноточные размыкающие  контакты изготовляются, как правило, из металлокерамических материалов, которые получают методом порошковой металлургии. Они включают в себя композиции на основе меди и серебра: серебро-оксид кадмия, серебро-оксид меди, медь-графит, серебро-никель, серебро-графит.

Скользящие контакты должны дополнительно отличаться высокой стойкостью к истирающим нагрузкам. Наиболее высокими качествами обладают контактные пары, составленные из металлического и графитосодержащего материалов. Кроме низкого коэффициента трения графит и материалы на его основе отличаются большим напряжением дугообразования, поэтому износ контактов от искрения незначителен.

Для скользящих контактов используются проводниковые бронзы и латуни, отличающиеся высокой механической прочностью, стойкостью к истирающим нагрузкам, упругостью, антифрикционными свойствами и стойкостью к атмосферной коррозии.  Для изготовления коллекторных пластин часто используются твердая медь, а также медь, легированная серебром, и другие материалы.

Металлокерамика применяется  для изготовления контактов из порошков заготовок или пропиткой серебром или медью предварительно прессованных пористых каркасов из вольфрама или вольфрамоникелевого сплава.

   Материалы с большим удельным сопротивлением К таким материалам относятся сплавы, имеющие при нормальных условиях удельное электрическое сопротивление не менее 0,3 мкОм·м. Эти материалы достаточно широко применяются при изготовлении различных электроизмерительных и электронагревательных приборов, образцовых сопротивлений, реостатов и т.д.

Для изготовления электроизмерительных приборов, образцовых сопротивлений  и реостатов применяются, как  правило, сплавы, отличающиеся высокой стабильностью удельного сопротивления во времени и малым температурным коэффициентом сопротивления. К числу таких материалов относятся манганин, константан и нихром.

Манганин - это медно-никелевый сплав, содержащий в среднем 2,5... 3,5% никеля (с кобальтом), 11,5... 13,5% марганца, 85,0... 89,0% меди. Легирование марганцем, а также проведение специальной термообработки при температуре 400 °С позволяет стабилизировать удельное сопротивление манганина в интервале температур от -100 до +100°С. Манганин имеет очень малое значение термоЭДС в паре с медью, высокую стабильность удельного сопротивления во времени, что позволяет широко использовать его при изготовлении резисторов и электроизмерительных приборов самых высоких классов точности.

Константан содержит те же компоненты, что и манганин, но в иных соотношениях: никель (с кобальтом) 39... 41%, марганец 1 ...2%, медь 56,1 ...59,1%. Его удельное электрическое сопротивление не зависит от температуры.

Нихромы - сплавы на основе железа, содержащие в зависимости от марки 15...25% хрома, 55...78% никеля, 1,5%марганца. Они в основном применяются для изготовления электронагревательных элементов, так как обладают хорошей стойкостью при высокой температуре в воздушной среде, что обусловлено близкими значениями температурных коэффициентов линейного расширения этих сплавов и их оксидных пленок.

Среди сплавов с высоким  сопротивлением, которые (кроме нихрома) широко используются для изготовления различных нагревательных элементов, необходимо отметить жаростойкие сплавы фехрали и хромали. Они относятся к системе Fe-Cr-Al и содержат в своем составе 0,7% марганца, 0,6% никеля, 12... 15% хрома, 3,5...5,5% алюминия и остальное - железо. Эти сплавы отличаются высокой стойкостью к химическому разрушению поверхности под воздействием различных газообразных сред при высоких температурах.

Свойства сверхпроводников и криопроводников.

 Согласно современной  теории, явление сверхпроводимости  металлов можно объяснить следующим образом. При температурах, близких к абсолютному нулю, меняется характер взаимодействия электронов между собой и атомной решеткой, так что становится возможным притягивание одноименно заряженных электронов и образование так называемых электронных (куперовских) пар. Поскольку куперовские пары в состоянии сверхпроводимости обладают большой энергией связи, обмена энергетическими импульсами между ними и решеткой нет. При этом сопротивление металла становится равным нулю. С увеличением температуры некоторая часть электронов термически возбуждается и переходит в одиночное состояние, характерное для обычных металлов. При достижении критической температуры Ткр все куперовские пары распадаются и состояние сверхпроводимости исчезает.

Аналогичный результат  наблюдается при определенном значении магнитного поля (критической напряженности Нкр или критической индукции Вкр), которое может быть создано собственным током и посторонними источниками. Критическая температура и критическая напряженность магнитного поля являются взаимосвязанными величинами (для чистых металлов):

где Нкр - критическая напряженность магнитного поля при абсолютном нуле; Т0 - критическая температура при отсутствии магнитного поля.

Следовательно, если идеальный  сверхпроводник поместить в магнитное  поле, то некоторой температуре Ткр1 < Т0 будет соответствовать определенное значение критической напряженности магнитного поля Нкр1. При Н > Нкр1 и температуре Ткр1 , сверхпроводя-щее состояние исчезает.

Известно 35 сверхпроводниковых металлов и более 1000 сверхпроводниковых сплавов и химических соединений различных элементов. Установлены также сверхпроводящие свойства у некоторых полупроводников, например антимонида индия InSb, серы, ксенона и пр. Для многих проводниковых материалов, таких как серебро, медь, золото, платина, даже при очень низких температурах достичь сверхпроводящего состояния пока не удалось.

По физико-химическим свойствам элементарные сверхпроводники (чистые металлы) можно разделить на мягкие (Hg, Sn, Pb, In) и жесткие (Та, Ti, Zr, Nb). Для мягких сверхпроводников характерны низкие температуры плавления и отсутствие внутренних механических напряжений, жесткие сверхпроводники отличаются наличием значительных внутренних напряжений. С позиций термодинамики сверхпроводниковые материалы принято делить на сверхпроводники I, II и III родов.

Для сверхпроводников I рода характерны скачкообразное изменение удельной теплоемкости и определенная температура перехода в сверхпроводящее состояние, которое может разрушиться уже при малых критических температурах и напряженности магнитного поля примерно 1 кА/м, что затрудняет их использование. У таких материалов наблюдается эффект Майснера-Оксенфельда, заключающийся в том, что при переходе образца в сверхпроводящее состояние магнитное поле выталкивается из него, т.е. он становится идеальным диамагнетиком.

Сверхпроводники II рода отличаются тем, что переход в  сверхпроводящее состояние у  них осуществляется не скачком, а постепенно. Для них характерны два критических значения магнитной индукции при температуре Ткр < Т0.  Если магнитная индукция во внешнем поле начинает превышать значение нижней критической индукции, то происходит частичное проникновение магнитного поля во всю толщину сверхпроводящего образца. При этом под действием силы Лоренца электроны в сверхпроводнике начинают двигаться по окружностям, образуя так называемые вихри. Внутри вихря скорость вращения возрастает по мере приближения к оси до тех пор, пока не достигнет критического значения и не произойдет «срыв» сверхпроводимости. По мере увеличения внешнего магнитного поля количество вихрей возрастает, а расстояние между ними сокращается. Когда оно становится соизмеримым с размером куперовской пары, весь объем переходит в нормальное состояние и магнитное поле полностью проникнет в образец. К сверхпроводникам II рода из чистых металлов можно отнести ниобий Nb, ванадий V и технеций Те.

Информация о работе Характеристика кристаллических решеток