Характеристика кристаллических решеток

Автор работы: Пользователь скрыл имя, 23 Июля 2013 в 21:16, реферат

Краткое описание

Материаловедение - прикладная наука о связи состава, строения и свойств материалов. Теоретической основой материаловедения являются соответствующие разделы физики и химии. Для конструкционных материалов основными свойствами являются:
- физические: плотность, теплопроводность, теплоемкость, электропроводность, магнитные свойства;
- химические: способность вступать в химические соединения, жаростойкость;
- механические: прочность, пластичность, твердость, упругость и вязкость.;
- технологические: жидкотекучесть, ковкость, обрабатываемость резанием;
- эксплуатационные: сопротивление коррозии, изнашиванию и усталости, жаропрочность, хладостойкость и др.

Прикрепленные файлы: 1 файл

1 Характеристика кристаллических решеток.doc

— 1.17 Мб (Скачать документ)

При дальнейшем повышении  температуры наступает истощение  примеси - полная ее ионизация. Собственная  же электропроводность заметно еще  не проявляется. В этих условиях концентрация свободных носителей от температуры не зависит, и температурная зависимость удельной проводимости полупроводника определяется зависимостью подвижности носителей заряда от температуры. Резкое увеличение удельной проводимости при дальнейшем росте температуры соответствует области собственной электропроводности.

В сильных электрических  полях нарушается линейность закона Ома j = σ·Е. Минимальную напряженность электрического поля, начиная с которой не выполняется линейная зависимость тока от напряжения, называют критической. Эта граница не является резкой и определенной и зависит от природы полупроводника, концентрации примесей, температуры окружающей среды. Так как удельная проводимость определяется концентрацией свободных носителей заряда и их подвижностью, то линейность закона Ома нарушается в том случае, когда по крайней мере одно из этих значений зависит от напряженности электрического поля.

Если изменение абсолютного  значения скорости свободного носителя заряда под действием внешнего поля на среднем пути между соударениями сравнимо с тепловой скоростью, то подвижность носителей заряда зависит от электрического поля, причем она может увеличиваться или уменьшаться в зависимости от температуры окружающей среды. Воздействие сильного электрического поля приводит к значительному росту концентрации свободных носителей заряда.

Под воздействием внешнего электрического поля напряженностью Е на полупроводник его энергетические зоны становятся наклонными. На рис.29 представлены электрические зоны полупроводника в сильном электрическом поле.

Рис.29

В сильном электрическом поле при наклоне зон возможен переход электрона из валентной зоны и примесных уровней в зону проводимости без изменения энергии в процессе туннельного «просачивания» электронов через запрещенную зону. Этот механизм увеличения концентрации свободных носителей под действием сильного электрического поля называют электростатической ионизацией, которая возможна в электрических полях с напряженностью примерно 108 В/м.

На рис.30 представлена зависимость проводимости полупроводника от напряженности внешнего электрического поля.

Рис.30

На рис.30  участок 1 соответствует выполнению линейности закона Ома, 2 - термоэлектронной ионизации, 3 -электростатической и ударной ионизации, 4 - пробою.

Проводимость твердого кристаллического тела изменяется от деформации из-за увеличения или уменьшения (растяжение, сжатие) междуатомных расстояний приводит к изменению концентрации и подвижности носителей заряда. Концентрация меняется вследствие изменения ширины энергетических зон полупроводника и смещения примесных уровней, что приводит к изменению энергии активации носителей заряда и, следовательно, к уменьшению или увеличению концентрации. Подвижность меняется из-за увеличения или уменьшения амплитуды колебания атомов при их сближении или удалении.

Изменение удельной проводимости полупроводников при определенном виде деформации характеризует тензочувствителъность: ,

которая представляет собой отношение относительного изменения удельного сопротивления к относительной деформации в данном направлении.

             Фотопроводимость полупроводников. Перевод электрона в свободное состояние или образование дырки может осуществляться также под воздействием света. Энергия падающего на полупроводник света передается электронам. При этом энергия, передаваемая каждому электрону, зависит от частоты световых колебаний и не зависит от яркости света (силы света). С увеличением яркости света возрастает число поглощающих свет электронов, но не энергия, получаемая каждым из них.

Для определенного полупроводника существует пороговая длина волны, определяемая энергией кванта, достаточной для возбуждения и перехода электрона с самого верхнего уровня валентной зоны на самый нижний уровень зоны проводимости, т.е. равная ширине запрещенной зоны. Фотопроводимость полупроводника определяется:  σф = q·Δn·μn

где Δn - дополнительное число электронов, образовавшихся в полупроводнике вследствие облучения его светом.

Освобожденные светом электроны  находятся в зоне проводимости очень короткое время (10-3 – 10-7 с). При отсутствии внешнего электрического поля они хаотически перемещаются в междуатомных промежутках. Когда к кристаллу приложена разность потенциалов, они участвуют в электропроводности. После окончания освещения образца электроны переходят на более низкие энергетические уровни - примесные или в валентную зону. При непрерывном освещении полупроводника устанавливается динамическое равновесие между образующимися дополнительными (неравновесными) носителями и уходящими на нижние уровни, т.е. устанавливается динамическое равновесие между процессами генерации носителей заряда и их рекомбинацией.

Термоэлектрические явления  в полупроводниках. К важнейшим термоэлектрическим явлениям в полупроводниках относятся эффекты Зеебека, Пельтье и Томпсона.

Сущность явления Зеебека  состоит в том, что в электрической  цепи, состоящей из последовательно соединенных разнородных полупроводников или полупроводника и металла, возникает ЭДС, если между концами этих материалов существует разность температур. Свободные носители заряда у горячего конца имеют более высокие энергии и количество их больше, чем у холодного. Поэтому больше поток носителей от горячего конца к холодному. В результате на концах полупроводника накапливается заряд. По знаку термоЭДС можно судить о типе электропроводности полупроводника.

Эффект, обратный явлению  Зеебека, называется эффектом Пельтье. Он состоит в том, что при прохождении  тока через контакт двух разнородных полупроводников или полупроводника и металла происходит поглощение или выделение теплоты в зависимости от направления тока.

Эффект томпсона заключается  в выделении или поглощении теплоты  при прохождении тока в однородном материале, в котором существует градиент температур. Наличие градиента температур в полупроводнике приводит к образованию термоЭДС.

Гальваномагнитные эффекты  в полупроводниках возникают при воздействии электрического и магнитного полей. Один из них эффект Холла заключается в следующем. Если полупроводник, вдоль которого течет электрический ток, поместить в магнитное поле, перпендикулярное направлению тока, то в полупроводнике возникнет поперечное электрическое поле, перпендикулярное току и магнитному полю.

На рис.31 изображена пластинка полупроводника п-типа. Электрическое поле Е направлено параллельно оси Z, а магнитное поле Н – вдоль оси Y. На движущийся ав магнитном поле электрон действует сила Лоренца, которая отклоняет его в направлении, перпендикулярном направлению магнитного поля. В результате электроны накапливаются у одного из торцов образца. На противоположной грани создается положительный нескомпенсированный заряд, обусловленный ионами донорной примеси. Такое накопление зарядов происходит до тех пор, пока действие возникшего  электрического поля не уравновесит действующую на электрон силу Лоренца.

Рис.31

Электронно-дырочный переход  является основным элементом структуры большинства типов полупроводниковых приборов. Он представляет собой переходной слой в полупроводниковом материале между двумя областями с различнымти типами проводимости или разными значениями удельной электропроводности, причем одна из областей может быть металлом.

Германий - один из наиболее тщательно изученных полупроводников, и многие явления, характерные для полупроводников, впервые экспериментально были обнаружены на этом материале.

Слитки предварительно очищенного германия используют в качестве исходного материала для получения  особо чистого германия методом  зонной плавки или же непосредственного получения монокристаллов методом вытягивания из расплава.

Сущность метода зонной плавки заключается в том, что  узкая расплавленная зона перемещается вдоль горизонтально расположенного образца, находящегося в графитовой или кварцевой «лодочке». Примеси, имеющиеся в образце, оттесняются к концу слитка. Для высококачественной очистки весь процесс повторяют много раз или используют установки более совершенной конструкции, позволяющие создавать вдоль слитка одновременно четыре или пять расплавленных зон.

Для получения монокристалла  по методу вытягивания из расплава тщательно очищенный от примесей германий расплавляют в установке. Схема установки для выращивания  монокристаллов методом Чохральского представлена на рис.32

Рис. 32

Рабочим объемом служит герметическая водоохлаждаемая камера, внутри которой создается вакуум давлением 10-4Па или защитная газовая среда (водоро или аргон). Материал 2 помещается в тигель 3, насаженный на конец водоохлаждаемого штока 4. Шток 4 при помощи электропривода приводится во вращение с постоянной скоростью. Его можно опускать или поднимать для подбора оптимального положения тигля с расплавом по отношению к нагревательному элементу 5. На нижнем конце штока 1 крепится монокристаллическая затравка. Затравка вводится в расплав и выдерживается в нем, пока не произойдет оплавление поверхности. После этого затравку, вращая, начинают медленно поднимать. За затравкой тянется жидкий столбик расплава, удерживаемый поверхностным натяжением. Попадая в область низких температур над поверхностью тигля, расплав затвердевает, образуя одно целое с затравкой. Этим способом получают монокристаллы германия диаметром до 100 мм.

На электрические свойства германия оказывает сильное влияние термообработка. Если образец п-типа нагреть до температуры выше 550 °С, а затем резко охладить (закалить), то изменяется тип электропроводности. Аналогичная термообработка германия р-типа приводит к снижению удельного сопротивления, без изменения типа электропроводности. Отжиг закаленных образцов при температуре 500...550°С восстанавливает не только тип электропроводности, но и первоначальное удельное сопротивление.

Германий применяется  для изготовления диодов различных  типов, транзисторов, датчиков ЭДС Холла, тензодатчиков. Оптические свойства германия позволяют его использовать для изготовления фотодиодов и фототранзисторов, модуляторов света, оптических фильтров, а также счетчиков ядерных частиц. Рабочий диапазон температур германиевых приборов от -60 до +70 °С.

Кремний является одним из самых распространенных элементов в земной коре; его содержание в ней примерно 29%. Однако в свободном состоянии в природе он не встречается, а имеется только в соединениях в виде оксида и в солях кремниевых кислот. Чистота природного оксида кремния в виде монокристаллов кварца иногда достигает 99,9%.

Технический кремний  содержит примерно 1% примесей, и как полупроводник использован быть не может. Он является исходным сырьем для производства кремния полупроводниковой чистоты, содержание примесей в котором должно быть менее 10-6%.

Технология получения  кремния полупроводниковой чистоты  включает в себя следующие операции: превращение технического кремния в легколетучее соединение, которое после очистки может быть легко восстановлено; очистка соединения физическими и химическими методами; восстановление соединения с выделением чистого кремния; конечная очистка кремния методом бестигельной зонной плавки; выращивание монокристаллов.

Объемные кристаллы  кремния получают методами выращивания из расплава и бестигельной вертикальной зонной плавки, схема которой представлена на рис.33.

В этом методе узкая расплавленная  зона 2 удерживается между твердыми частями слитка (1 - монокристаллическая,  4 – поликристаллическая часть) благодаря силам поверхностного натяжения. Расплавление слитка осуществляется с помощью высокочастотного индуктора 3; процесс происходит в вакууме или в атмосфере защитной среды.

Рис.33

Кристаллы кремния п- и р-типов получают введением при выращивании соответствующих примесей, среди которых наиболее часто используются фосфор и бор.

Проводимость кремния, как и германия, очень сильно изменяется из-за присутствия примесей. На рис.34 приведены зависимости удельного сопротивления кремния и германия от концентрации примесей.

Рис.34

Кремний является базовым материалом полупроводниковой электроники. Он используется как для создания интегральных микросхем, так и для изготовления дискретных полупроводниковых приборов. Полупроводниковые интегральные микросхемы, отличающиеся малыми размерами и сложной конфигурацией активных областей, особенно широко применяются в вычислительной технике и радиоэлектронике. Из кремния изготовляются различные типы полупроводниковых диодов: низкочастотные (высокочастотные), маломощные (мощные), полевые транзисторы; стабилитроны; тиристоры. Широкое применение в технике нашли кремниевые фотопреобразовательные приборы: фотодиоды, фототранзисторы, фотоэлементы солнечных батарей. Подобно германию, кремний используется для изготовления датчиков Холла, тензодатчиков, детекторов ядерных излучений.

Благодаря тому, что ширина запрещенной зоны кремния больше, чем ширина запрещенной зоны германия, кремниевые приборы могут работать при более высоких температурах, чем германиевые. Верхний температурный предел работы кремниевых приборов достигает 180... 200 °С.

Селен. Этот элемент VI группы таблицы Менделеева обладает рядом полезных электрических свойств. Он существует в нескольких аллотропных модификациях - стеклообразной, аморфной, моноклинной, г»ксагональной. Для очистки селена используют методы вакуумной ректификации и очистку с помощью ионнообменных смол. В результате содержание примесей уменьшается до 10-4%.

Для изготовления полупроводниковых  приборов (выпрямителей переменного тока и фотоэлементов) используется серый кристаллический гексагональный селен. Ширина его запрещенной зоны 1,79 эВ. Такой, селен обладает дырочным типом электропроводности. Его удельное сопротивление примерно 103 Ом·м (при комнатной температуре). Селен в отличие от других полупроводников обладает аномальной температурной зависимостью концентрации свободных носителей заряда: она уменьшается с ростом температуры, подвижность носителей заряда при этом возрастает. Электрические свойства селена измерялись многими исследователями, однако данные весьма противоречивы.

Информация о работе Характеристика кристаллических решеток