Характеристика кристаллических решеток

Автор работы: Пользователь скрыл имя, 23 Июля 2013 в 21:16, реферат

Краткое описание

Материаловедение - прикладная наука о связи состава, строения и свойств материалов. Теоретической основой материаловедения являются соответствующие разделы физики и химии. Для конструкционных материалов основными свойствами являются:
- физические: плотность, теплопроводность, теплоемкость, электропроводность, магнитные свойства;
- химические: способность вступать в химические соединения, жаростойкость;
- механические: прочность, пластичность, твердость, упругость и вязкость.;
- технологические: жидкотекучесть, ковкость, обрабатываемость резанием;
- эксплуатационные: сопротивление коррозии, изнашиванию и усталости, жаропрочность, хладостойкость и др.

Прикрепленные файлы: 1 файл

1 Характеристика кристаллических решеток.doc

— 1.17 Мб (Скачать документ)

Рис.38

Если Т/2 <τ, то электрические моменты полярных молекул не успевают ориентироваться в электрическом поле и дипольная поляризация уменьшается. Поэтому εr полярного диэлектрика уменьшается (рис.38,б). В зависимости от строения диэлектрика и внешних условий время релаксации τ дипольной поляризации изменяется в широких пределах (от 10-8 до 10-1 с). При ориентации в электрическом поле диполи преодолевают межмолекулярные силы взаимодействия, поворачиваются с “трением”; в этой области температур дипольная поляризация происходит с потерями.

Ионно-релаксационная поляризация. Используемые в технике твердые диэлектрики могут иметь неплотную упаковку объема частицами, дефекты кристаллической решетки – вакансии. Перемещение ионов в электрическом поле становится направленным. В результате возникает различие в расположении центров положительного и отрицательного зарядов, т.е. появляется электрический момент. Такой процесс называется ионно-релаксационной поляризацией. С ростом температуры увеличивается поляризованность и диэлектрическая проницаемость.

Миграционная поляризация. Электроизоляционные материалы могут быть неоднородными с отличающимися значениями удельной электрической проводимости и диэлектрической проницаемости. Образуются дополнительные заряды на границах блоков, зерен. Могут иметь место такие слабо связанные ионы, которые напрвляются к электродам и там локализуются, в результате около электродов образуется объемный заряд, обусловливающий электрический момент. Такую поляризацию называют объемно-зарядовой или высоковольтной поляризацией. Процессы миграционной поляризации завершаются  за 10-3…1 с.

Спонтанная (самопроизвольная) поляризация. Доменная поляризация. Сегнетоэлектрики. Характерные для сегнетоэлектриков свойства впервые были обнаружены у сегнетовой соли, поэтому сегнетоэлектриками стали называть вещества, свойства которых подобны свойствам сегнетовой соли.

 В сегнетоэлектриках даже  в отсутствии электрического  поля наблюдается самопроизвольное  смещение частиц – ионов в  ионных кристаллах или полярных радикалов молекул, которое приводит к несовпадению положительного и отрицательного зарядов в объеме диэлектрика, то есть поляризации. Такая поляризация называется спонтанной (самопроизвольной). В диэлектрике образуются области - домены. В каждом домене частицы, обусловливающие самопроизвольную поляризацию, смещены в одном направлении. В этом направлении ориентирован и вектор спонтанной поляризованности Ps домена. В соседних доменах направление Ps может быть противоположным или перпендикулярным (рис.39,а).

Рис.39

 В электрическом  поле в сегнетоэлектриках происходят  упругие электронная и ионная  поляризации, а также неупругая доменная. В процессе доменной поляризации векторы Рs доменов ориентируются по направлению электрического поля (рис.39,б). Переориентацией направлений Рs доменов объясняются характерные для сегнетоэлектриков нелинейные свойства: диэлектрический гистерезис и зависимость их диэлектрической проницаемости от напряженности электрического поля (рис.39,в,г). Поляризованность кристалла с ростом напряженности электрического поля увеличивается благодаря ориентации Рs доменов и достигает поляризованности насыщения. С уменьшением напряженности при Е = 0 наблюдается остаточная поляризованность, так как сохраняется ориентация доменов. Уменьшить поляризованность до нуля можно приложив к образцу электрическое поле напряженностью Ес, которое называется коэрцитивной силой.

Для сегнетоэлектриков  характерны большая (до нескольких тысяч) диэлектрическая проницаемость и ее резкая зависимость от температуры (рис.39,д). Увеличение температуры приводит к ослаблению сил, препятствующих ориентации доменов. Поляризованность диэлектрика, вызванная доменной поляризацией, увеличивается, а диэлектрическая проницаемость достигает максимального значения при температуре точки Кюри. Спонтанная поляризованность при температуре Кюри исчезает, сегнетоэлектрик теряет свои сегнетоэлектрические свойства и переходит в параэлектрическое состояние, при котором сохраняется нелинейная зависимость диэлектрической проницаемости от напряженности электрического поля.

Удельные диэлектрические  потери и угол диэлектрических потерь.

Диэлектрическими потерями называют мощность, поглощаемую диэлектриком под действием приложенного напряжения. Потери мощности вызываются электропроводностью и медленными поляризациями. Если в диэлектрике имеют место газовые включения (поры), то в процессе работы его при высоких напряжениях и высоких частотах происходит ионизация газа в порах, что вызывает потери на ионизацию.

При включении на постоянное напряжение конденсатора, между электродами которого находится диэлектрик, через него протекает уменьшающийся со временем ток I = Iабс + Ιск (рис. 40, а).

Рис.40

Ток смещения (емкостной  ток) Ic вызван смещением электронных оболочек в атомах, ионах и молекулах, т.е. процессом установления быстрых, упругих поляризаций; он спадает в течение 10-16... 10-15 с, поэтому не вызывает рассеяния энергии в диэлектрике.

Спадающий со временем ток  абсорбции Iабс обусловлен смещением связанных зарядов в ходе медленных поляризаций и вызывает рассеяние энергии в диэлектрике, диэлектрические потери.

Сквозной ток утечки Iск вызван перемещением свободных зарядов в диэлектрике в процессе электропроводности, не изменяется со временем (если не происходит электроочистка диэлектрика или его старение, деградация) и вызывает потери, аналогичные джоулевым потерям в проводниках. Следовательно, при постоянном напряжении потери, вызванные током абсорбции, имеют место только в период, когда происходит процесс медленных поляризаций, т.е. при включении конденсатора.

При переменном напряжении Iабс имеет место, если время релаксации процесса медленных поляризаций меньше или соизмеримо с полупериодом приложенного напряжения (τ = Т/2). В этом случае мощность, рассеиваемая в диэлектрике под воздействием на него электрического поля, т.е. диэлектрические потери, обусловливаемые токами Iск и Iабс, наблюдаются в течение всего времени воздействия приложенного напряжения.

На векторной диаграмме  токов, протекающих через конденсатор с диэлектриком при переменном напряжении (рис. 23, б), емкостной ток Ic опережает напряжение U по фазе на угол 90° и поэтому не создает потерь мощности в диэлектрике. Ток абсорбции Iабс определяется поляризациями, процесс установления которых связан с потерями энергии. Поэтому он имеет реактивную Iра и активную Iаа составляющие. Сквозной ток Iск совпадает по фазе с приложенным напряжением. Суммарный ток I имеет реактивную Ip = Ic + Ipa и активную Ia = Iаа + Iск составляющие и опережает напряжение на угол φ < 90°. Угол δ дополняющий до 90° угол фазового сдвига между током и напряжением в емкостной цепи, называют углом диэлектрических потерь. В соответствии с векторной диаграммой токов:

tgδ = Ia/Ip,

где tgδ - тангенс угла диэлектрических потерь, который является важным параметром, характеризующим качество диэлектрика при работе на переменном напряжении.

Для диэлектриков, применяемых  в технике высоких частот и  высоких напряжений, значение tgδ не должно превышать 10-4…10-3.  Мощность диэлектрических потерь: Ра = UIa = ωU2C tgδ. Подставив выражение для емкости плоского конденсатора, и приняв  S = 1 м2,  h = 1 м, получим формулу для расчета удельных диэлектрических потерь (Вт/м2): Ра уд = 5,567 ·1011 Е2 εr f tgδ, где Е – напряженность электрического поля, В/м; εr tgδ = ε˝ - коэффициент диэлектрических потерь; 5,567·10-11 εr f tgδ = σа – проводимость диэлектрика при переменном токе частотой f, См/м.

Диэлектрические потери в твердых диэлектриках. В неполярных твердых диэлектриках диэлектрические потери вызваны электропроводностью, а в полярных - электропроводностью и дипольной поляризацией. Изменение tgδ от температуры и частоты для твердых неполярных и полярных диэлектриков представлены на рис.41.

Рис.41

В процессе тепловой ионной поляризации твердых диэлектриков перемещение слабосвязанных ионов в электрическом поле происходит с потерями энергии. В некоторых диэлектриках с неплотной упаковкой объема частицами, например стеклах, где имеет место ионно-релаксационная поляризация, также наблюдаются закономерности изменения tgδ от температуры и частоты, характерные для дипольной поляризации.

Диэлектрические потери в сегнетоэлектриках определяются электропроводностью и доменной поляризацией. Изменения tgδ от температуры и частоты в этом случае такие же, как и у твердых полярных диэлектриков.

Пробой диэлектриков и электрическая прочность.

Если в ходе повышения  приложенного к изоляции напряжения напряженность электрического поля в диэлектрике превышает некоторое  критическое значение, то диэлектрик теряет свои электроизолирующие свойства.

Сквозной ток, протекающий  через диэлектрик, резко возрастает до 108 А/м2, а сопротивление диэлектрика уменьшается до такого значения, что происходит короткое замыкание электродов. Это явление называют пробоем диэлектрика. Значение напряжения в момент пробоя Uпр называют пробивным напряжением, напряженность электрического поля Епр - электрической прочностью.

Если напряжение U достигло значения Uпр, то сквозной ток резко увеличивается даже и тогда, когда напряжение на электродах уменьшается. Это обусловливается тем, что под действием приложенного напряжения в диэлектрике происходят необратимые изменения, резко уменьшающие его электрическое сопротивление. Различают следующие виды пробоя диэлектриков.

Электрический пробой - это процесс, в результате которого диэлектрик разрушается силами, действующими в электрическом поле на электрические заряды его атомов, ионов или молекул. Он вызывается ударной ионизацией электронами.

Электротепловой пробой обусловлен прогрессивно нарастающим выделением теплоты в диэлектрике под действием диэлектрических потерь или электропроводности; его часто называют тепловым пробоем.

Тепловой пробой возникает, когда нарушается равновесие между теплотой, выделяющейся в диэлектрике, и теплотой, которая отводится в окружающую среду. Если выделяющаяся теплота больше отводимой, то диэлектрик нагревается, и в местах наихудшего теплоотвода температура возрастает до такого значения, при котором происходит прожог, проплавление, т.е. пробой.

Электрохимический пробой (электрическое старение) обусловлен медленными изменениями химического состава и сруктуры диэлектрика, которые развиваются под действием электрического поля или частичных разрядов в диэлектрике или в окружающей диэлектрик среде. Процесс электрохимического пробоя развивается в электрических полях с напряженностью, значительно меньшей, чем электрическая прочность диэлектрика.

Электроизоляционные пластмассы

Основной частью пластмасс  являются полимеры – высокомолекулярные соединения. В состав пластмасс кроме полисеров могут входить наполнители, пластификаторы, стабилизаторы, отвердители, красители, порообразователи и другие добавки. Полимеры имеют большую молекулярную массу и состоят из мономеров. Полимеризацией называют реакцию образования полимера из молекул мономера без выделения низкомолекулярных побочных продуктов. Поликонденсация – реакция образования полимера из мономеров с выделением низкомолекулярных веществ. Полимеры делят на линейные и пространственные.

Термопластичные полимеры (термопласты) получают на основе полимеров с линейной структурой макромолекул. При нагревании они размягчаются, а при охлаждении затвердевают, при этом не происходит никаких химических реакций и процесс неоднократно обратим.

Термореактивные полимеры (реактопласты) при нагревании образуют пространственную структуру макромолекул и переходят в неплавкое и нерастворимое состояние. Этот процесс является необратимым.

Линейные неполярные полимеры характеризуются малыми диэлектрическими потерями, применяются как электроизоляционные материалы в электротехнике и радиоэлектронике. К ним относятся: полиэтилен , полистирол , полиизобутилен , полипропилен, политетрафторэтилен (фторопласт-4) , имеют наибольшее техническое значение из материалов, получаемых полимеризацией.

Линейные полярные полимеры по сравнению с неполярными обладают большими значениями диэлектрической проницаемости (ε = 3…6) и диэлектричесими потерями (tgδ = (1…6)10-2 на частоте 1МГц). Такие свойства объясняются асимметричностью строения элементарных звеньев макромолекул, благодаря чему в этих материалах возникает дипольно-релаксационная поляризация. К числу этих полимеров относятся поливинилхлорид , политрифторхлорэтилен (фторопласт-3) , полиамидные смолы.

Полимеры, получаемые поликонденсацией по типу связующего вещества пластмассы подразделяются на феноло-формальдегидные (фенопласты), эпоксидные, полиэфирные, кремнийорганические, полиимидные. Феноло-формальдегидные смолы это продукты поликонденсации фенолов с формальдегидом. В зависимости от условий проведения поликонденсации можно получить термопластичные смолы, называемые новолачными (при избытке фенола), или термореактивные, называемые резольными (при избытке формальдегида). Новолачные смолы применяются для производства лаков и пресс-порошков для изготовления электрической изоляции. Резит (бакелит в стадии С) используется при изготовлении слоистых пластиков (гетинакса и текстолита).

Термореактивные полиэфирные  смолы (глифталевые) применяются для  пропитки обмоток электрических машин, трансформаторов. Термопластичный полимер, получаемый из этиленгликоля и терефталевой кислоты (лавсан) применяется при производстве конденсаторов и в качестве пазовой изоляции в электрических машинах, по диэлектрическим показателям относится к слабополярным диэлектрикам.

Эпоксидные полимеры используются в качестве электроизоляционных  и герметизирующих материалов, они обладают хорошей адгезией практически ко всем конструкционным материалам.

Кремнийорганические полимеры могут быть получены в виде эластичных смол, твердых тел и жидких диэлектриков. Практически не смачиваются водой, используются для придания водоотталкивающих свойств пластмассам, керамике и другим материалам.

Полиимиды относятся  к числу наиболее нагревостойких органических полимеров, применяются  для изготовления пленок, лаков, нагревостойких волокон.

Информация о работе Характеристика кристаллических решеток