Автор работы: Пользователь скрыл имя, 23 Июля 2013 в 21:16, реферат
Материаловедение - прикладная наука о связи состава, строения и свойств материалов. Теоретической основой материаловедения являются соответствующие разделы физики и химии. Для конструкционных материалов основными свойствами являются:
- физические: плотность, теплопроводность, теплоемкость, электропроводность, магнитные свойства;
- химические: способность вступать в химические соединения, жаростойкость;
- механические: прочность, пластичность, твердость, упругость и вязкость.;
- технологические: жидкотекучесть, ковкость, обрабатываемость резанием;
- эксплуатационные: сопротивление коррозии, изнашиванию и усталости, жаропрочность, хладостойкость и др.
Материаловедение - прикладная наука о связи состава, строения и свойств материалов. Теоретической основой материаловедения являются соответствующие разделы физики и химии. Для конструкционных материалов основными свойствами являются:
Все эти свойства
В природе существуют две разновидности твердых тел, различающиеся по своим свойствам: кристаллические и аморфные.
Кристаллические тела остаются твердыми, т.е. сохраняют приданную им форму до определенной температуры, при которой они переходят в жидкое состояние. При охлаждении процесс идет в обратном направлении. Переход из одного состояния в другие протекает при определенной температуре плавления.
Аморфные тела при нагреве размягчаются в большом температурном интервале, становятся вязкими, а затем переходят в жидкое состояние. При охлаждении процесс идет в обратном направлении.
Кристаллическое состояние твердого тела более стабильно, чем аморфное. В результате длительной выдержки при температуре, а в некоторых случаях при деформации, нестабильность аморфного состояния проявляется в частичной или полной кристаллизации. Пример: помутнение неорганических стекол при нагреве.
Кристаллические тела характеризуются упорядоченной структурой. В зависимости от размеров структурных составляющих и применяемых методов их выявления используют следующие понятия: тонкая структура, микро- и макроструктура.
Тонкая структура описывает расположение элементарных частиц в кристалле и электронов в атоме. Изучается дифракционными методами рентгенографии и электронографии. Большинство кристаллических материалов состоит из мелких кристалликов - зерен. Наблюдают такую микроструктуру с помощью оптических или электронных микроскопов. Макроструктуру изучают невооруженным глазом или при небольших увеличениях, при этом выявляют раковины, поры, форму и размеры крупных кристаллов.
Закономерности расположения элементарных частиц в кристалле задаются кристаллической решеткой. Для описания элементарной ячейки кристаллической решетки используют шесть величин: три отрезка - равные расстояния до ближайших элементарных частиц по осям координат a, b, c и три угла между этими отрезками . Соотношения между этими величинами определяют форму ячейки. По форме ячеек все кристаллы подразделяются на семь систем, типы кристаллических решеток которых представлены на рис.1.
Рис.1.
1 – кубическая; 2 – тетрагональная; 3 – ромбическая; 4 – ромбоэдрическая; 5 – гексагональная; 6 – моноклинная; 7 – триклинная
Отрезки a, b, c - периоды решетки, определяют размер элементарной ячейки. В большинстве случаев решетки сложнее, так как элементарные частицы находятся не только в узлах кристаллической решетки, но и на ее гранях или в центре решетки. Наиболее распространенные сложные кристаллические решетки металлов представлены на рис.2.
Рис. 2.
а) объемно-центрированная
Для задания направления в
Рис.3
Индексы направления определяют координаты узла кристаллической решетки в единицах отрезков a, b, c, проходят через начало координат и узлы кристаллической решетки, их обозначают целыми числами и заключают в квадратные скобки. Кристаллографические направления и их индексы в простой кубической решетке представлены на рис.4.
Рис.4.
Кристаллические тела обладают свойством анизотропии. Анизотропия - это зависимость свойств кристаллических тел от направления, возникающая в результате разных расстояний между атомами (ионами, молекулами) в различных кристаллографических направлениях. Анизотропия присуща всем свойствам кристаллов: температурному коэффициенту линейного расширения, удельному электрическому сопротивлению, магнитным свойствам, модулю упругости. Но это все характерно для монокристаллов, которые получают в основном искусственным путем. В природе кристаллические тела - поликристаллы, т.е. состоят из множества различно ориентированных кристаллов. В этом случае анизотропии нет, их считают мнимоизотропными. В процессе обработки давлением наблюдается параллельная ориентация различных кристаллов, такие структуры называют текстурованными и они анизотропны.
Между частицами в кристалле могут существовать различные типы связи. Тип связи определяется электронным строением атомов, вступающих во взаимодействие. Элементарные частицы сближаются на определенное расстояние, которое обеспечивает наибольшую термодинамическую стабильность - минимум энергии связи.
Энергия связи определяет
физические свойства
Молекулярные кристаллы - это кристаллы, в которых преобладает связь Ван-дер-Ваальса. Например, в кристаллах инертных газов при очень низких температурах и больших давлениях (твердое состояние) при сближении атомов обмен электронами невозможен, силы притяжения между ними объясняются мгновенной поляризацией атомов при сближении. При нормальных условиях к молекулярным относятся кристаллы J2, H2O, CO2, CH4. Для этих кристаллов характерна наиболее компактная кристаллическая решетка - ГЦК. Энергия связи невелика, поэтому кристаллические тела с молекулярным типом связи имеют низкие температуры плавления и испарения, большие температурные коэффициенты линейного расширения, обладают диэлектрическими свойствами.
Ковалентные кристаллы – это кристаллы,
у которых преобладает ковалентный тип
связи. Такие кристаллы образуют элементы
4, 5, 6 подгруппы В периодической системы.
Атомы обобществляют свои валентные электроны
с соседними атомами, достраивая валентную
зону. Пример: углерод, кремний, германий,
сурьма, висмут и др. Для этих материалов
характерна направленность межатомных
связей и неплотноупакованные кристаллические
структуры. Материалы с ковалентным типом
связи обладают низкой пластичностью
и высокой твердостью, имеют высокую температуру
плавления, по электрическим свойствам
относятся к полупроводникам и диэлектрикам. Металлич
Ионные кристаллы – характерны для сложных кристаллов, состоящих из элементов различной валентности. Между элементами происходит перераспределение электронов, электроположительный элемент теряет свои валентные электроны и превращается в положительный ион, а электроотрицательный - приобретает, достраивая свою валентную зону до устойчивой конфигурации, как у инертных газов. Пример - кристалл оксида железа FeO, решетка которого состоит из отрицательно заряженных ионов кислорода и положительно заряженных ионов железа. Величина энергии связи кристаллов с ионным типом связи близка к ковалентным кристаллам и превышает металлические и тем более молекулярные. Имеют высокую температуру плавления и испарения, высокий модуль упругости и низкий коэффициент линейного расширения.
1.3. Дефекты кристаллов
Строение реальных кристаллов отличается от идеальных, в реальных кристаллах всегда содержатся дефекты, которые подразделяются на: точечные, линейные, поверхностные и объемные.
Размеры точечного дефекта близки к межатомному расстоянию, самые простые - вакансии - пустой узел кристаллической решетки и наличие межузельного атома, появляются из-за тепловых колебаний атомов. Каждой температуре соответствует равновесная концентрация вакансий и межузельных атомов, пересыщение точечными дефектами достигается при резком охлаждении после высокотемпературного нагрева, при пластическом деформировании и при облучении нейтронами. Ускоряют все процессы, связанные с перемещением атомов - диффузия, спекание порошков и т.д., повышают электросопротивление, но почти не влияют на механические свойства чистых металлов. На рис.5 представлены разновидности точечных дефектов в кристаллической решетке.
Рис.5
а – вакансии; б – межузельный атом; в – примесный атом внедрения
Линейные дефекты характеризуются малыми размерами в двух измерениях, но имеют значительную протяженность в третьем измерении. Важнейший вид линейных дефектов - дислокации. Вокруг дислокаций решетка упруго искажена. Плотность дислокаций - суммарная длина всех линий дислокаций в единице объема. Дислокации значительно влияют на свойства материалов, участвуют в фазовых превращениях, рекристаллизации, служат готовыми центрами при выпадении второй фазы из твердого раствора, влияют на прочность кристаллов, увеличивая ее в несколько раз по сравнению с отожженным состоянием. На рис.6 представлен один из видов линейной дислокации.
Рис.6
Поверхностные дефекты имеют малую толщину и значительные размеры в двух измерениях. Обычно это места стыков двух ориентированных участков кристаллической решетки. Ими могут быть границы зерен, границы фрагментов внутри зерна, границы блоков внутри фрагментов. Фрагменты имеют угол разориентировки не более 50 , такие границы называют малоугловыми границами. Для поликристаллических материалов границы между зернами представляют собой переходный слой, в котором нарушена правильность расположения атомов, имеются скопления дислокаций, повышена концентрация примесей. Границы между зернами - большеугловые дефекты, значительно влияют на физические и механические свойства материалов: чем меньше зерно - тем выше предел текучести, вязкость и меньше хрупкость.
1.4. Структура полимеров, стекла и керамики
Полимерами называют вещества с большой молекулярной массой ( 104 ), у которых молекулы состоят из одинаковых групп атомов - звеньев. Каждое звено представляет молекулу исходного низкомолекулярного вещества - мономера. В зависимости от характера связей между линейными молекулами полимеры разделяют на термопластичные и термореактивные.
Термопластичные способны многократно размягчаться при нагреве и твердеть при охлаждении без изменения своих свойств.
Термореактивные при повторном нагреве остаются твердыми вплоть до полного термического разложения.
Различие объясняется тем, что у термопластичных между молекулами действуют относительно слабые силы Ван-дер-Ваальса, при нагреве эти связи ослабляются и материал размягчается; у термореактивных дополнительно к молекулярным связям имеются поперечные ковалентные связи между молекулами.
Имеют аморфную структуру с различной степенью кристаллизации.
Стекло представляет собой аморфное вещество, образующееся при сплавлении оксидов или безоксидных соединений. Стеклообразующими являются оксиды SiO2 , B2O3 , P2O5 , GeO2 . Структура аморфного стекла возникает при охлаждении стеклянной массы, когда повышение ее вязкости препятствует кристаллизации.
Керамику получают при высокотемпературном спекании порошков. При нагреве исходные материалы взаимодействуют между собой, образуя кристаллическую и аморфную фазы. Керамика представляет пористый материал, аморфная фаза является стеклом, которое по химическому составу отличается от кристаллов. Имеет поликристаллическую структуру с прослойками стекла и с беспорядочным расположением зерен и поэтому однородна по свойствам. Обладает хрупкостью.
Ситаллы или стеклокристаллические материалы получают из стекол специального состава при помощи контролируемой кристаллизации. Структура представляет смесь очень мелких беспорядочно ориентированных кристаллов и остаточного стекла ( по химическому составу отличается от исходного). Для образования кристаллов вводят Li2O , TiO2 , Al2O3 . Имеют применение фотоситаллы - фоточувствительные материалы и термоситаллы - износостойкие материала (узлы трения, защитные эмали, стабильные диэлектрики, платы).
Жидкие кристаллы. Это жидкости с упорядоченной молекулярной структурой. Занимают промежуточное место между кристаллами и жидкостями с беспорядочным расположением молекул. Обладают анизотропией свойств: показатель преломления света, удельное электрическое сопротивление, диэлектрическая проницаемость, вязкость и т.д. Структура жидких кристаллов легко изменяется под действием давления, электрического поля, нагрева, что позволяет управлять их свойствами, создавать чувствительные индикаторы. Значение имеют органические вещества, у которых молекулы имеют удлиненную форму.