Автор работы: Пользователь скрыл имя, 04 Апреля 2014 в 18:45, реферат
Геометрия – это одна из древнейших наук. Исследовать различные
пространственные формы издавна побуждало людей их практическая
деятельность. Древнегреческий ученый Эвдем Родосский в IV веке до нашей эры писал: «Геометрия была открыта египтянами, и возникла при измерении Земли. Это измерение было им необходимо вследствие разлития реки Нил, постоянно смывавшей границы. Нет ничего удивительного, что эта наука, как и другие, возникла из потребности человека».
Многие первоначальные геометрические сведения получили также шумеро- вавилонские, китайские и другие ученые древнейших времен. Устанавливались они сначала только опытным путем, без логических доказательств.
Введение..................................................................................................3
Аксиомы в «Началах» Евклида.............................................................4
Открытие неевклидовой геометрии......................................................8
Из истории неевклидовой геометрии………………………………..14
Заключение……………………………………………………………20
Библиография…………………………………………………………21
следовательно, и теоремы, и формулы сферической геометрии во многом отличаются от аксиом, теорем и формул плоской геометрии Евклида, а так же Лобачевского. В частности, прямые Римана все замкнуты и конечны, имея одну и ту же длину. Сумма углов сферического треугольника, как известно, больше 2d, каждые две прямые имеют одну общую точку, то есть, на римановой плоскости нет параллельных прямых.
В разработку эллиптической геометрии значительный вклад внес Гаусс своими исследованиями о поверхностях.
Сравнивая три, в известном смысле дополняющих друг друга , геометрии: гиперболическую, евклидову (называемую так же параболической) и эллиптическую, следует отметить, что в первой из них через точку вне данной прямой можно провести к этой прямой две параллельные, во второй – одну, а в третей – ни одной. В первой сумма внутренних углов треугольника меньше 2d, во второй равна 2d, а в третей – меньше 2d. Возникшие из попыток доказательства V постулата неевклидовы геометрии, открытые Лобачевским, Бояй, Гауссом и Риманом и развитые в трудах Бельтрами, Кэли, Клейна, Пуанкаре и других ученых, стали в наши дни
необходимым аппаратом для изучения механики, физики и астрономии. Особенно важна геометрия Лобачевского для теории относительности, так как группа важных для теории относительности «преобразований Лоренца» изоморфна группе движений пространства Лобачевского. С другой стороны, открытие неевклидовой геометрии привело к новым исследованиям в области оснований геометрии и, в частности, к аксиоматике Гильберта. Отказываясь от аксиомы Архимеда или от аксиомы Кантора, он получает «неархимедову» соответственно «неканторову» геометрию и т.п.
ЗАКЛЮЧЕНИЕ
Открытие неевклидовой геометрии, начало которому положил Лобачевский, не только сыграло огромную роль в развитии новых идей и методов в математике естествознании, но имеет и философское значение. Господствовавшее до Лобачевского мнение о незыблемости геометрии Евклида в значительной мере основывалось на учении известного немецкого философа И. Канта (1724-1804), родоначальника немецкого классического идеализма. Кант утверждал, что человек упорядочивает явления реального мира согласно априорным представлениям, а геометрические представления и идеи якобы априорны (латинское слово aprior означает – изначально, заранее), то есть, не отражают явлений действительного мира, не зависят от практики, от опыта, а являются врожденными человеческому миру, раз и навсегда зафиксированными,
свойственными человеческому разуму, его духу. Поэтому , Кант считал, что Евклидова геометрия непоколебима, неизменна, и является вечной истиной. Еще до Канта геометрия Евклида считалась незыблемой, как единственно возможное учение о реальном пространстве.
Открытие неевклидовой геометрии доказало, что нельзя абсолютировать представления о пространстве, что «употребительная» (как назвал Лобачевский геометрию Евклида) геометрия не является единственно возможной, однако это не подорвало незыблемость геометрии Евклида. Итак, в основе геометрии Евклида лежат не априорные, врожденные уму понятия и аксиомы, а такие понятия, которые связаны с деятельностью человека, с человеческой практикой. Только практика может решить вопрос о том, какая геометрия вернее излагает свойства физического пространства. Открытие неевклидовой геометрии дало решающий толчок грандиозному развитию науки, способствовало и поныне способствует более глубокому пониманию окружающего нас материального мира.
БИБЛИОГРАФИЯ
1. Г.И. Глейзер. История математики в школе IX – X классы. Пособие для учителей. Москва, «Просвещение» 1983г.
2. Даан Дальмедино А., Пейффер И. Пути и лабиринты. Очерки по истории математики. Перевод с французского. М: Мир.1986г.
3. Б.Л. Лаптев. Н.И. Лобачевский и его геометрия. Пособие для учащихся.
М. «Просвещение», 1970г.
4. И.М. Яглам. Принцип относительности
Галилея и неевклидова
Информация о работе Неевклидовые геометрии и их роль в современном мире