Автор работы: Пользователь скрыл имя, 28 Сентября 2012 в 07:08, курсовая работа
В зависимости от способа формирования изображений компьютерную графику подразделяют на три основных вида растровую, векторную и фрактальную.
Отдельным видом считается трехмерная (3D) графика, изучающая приемы и методы построения объемных моделей объектов в виртуальном пространстве. Как правило, в ней сочетаются векторный и растровый способы формирования изображений.
Введение
1. Роль компьютерной техники в цифровой картографии
2. Основные задачи и определение компьютерной графики
3. Виды компьютерной графики
3.1 Растровая графика
3.1.1 Форматы файлов растровой графики
3.1.2 Прикладные программы для работы с растровой графикой
3.2 Векторная графика
3.2.1 Форматы файлов векторной графики
3.2.2 Прикладные программы для работы с векторной графикой
3.3 Фрактальная графика
3.3.1 Форматы файлов фрактальной графики
3.3.2 Программы для создания фрактальной графики
3.4 Трехмерная графика
3.4.1 Форматы файлов трехмерной графики
3.4.2 Прикладные программы для работы с трехмерной графикой
4. Пользовательский интерфейс AutoCAD
4.1 Построение геодезического знака в системе AutoCAD
4.2 Решение обратной угловой засечки графоаналитическим методом в системе AutoCAD
Заключение
Использованная литература
Приложение 1
Приложение 2
К сожалению, в рамках данной статьи многие аспекты цифровой картографии не получили должного освещения или вообще не были упомянуты, в том числе и периферийные устройства, но для того, чтобы полностью раскрыть эту тему, необходим целый цикл статей на разную тематику. При этом можно выделить главное – цифровые методы и оборудование настолько глубоко вошли в современную геодезию, что теперь все ее развитие неразрывно связано с развитием компьютерной техники и программного обеспечения, причем этот революционный скачек произошел практически на протяжении 10 лет. Такое стремительное развитие расширило круг выполняемых задач и сократило их сроки, таким образом, это привело к тому, что только организации, владеющие современной техникой и имеющие знающих специалистов, в их числе и наша фирма, могут выполнить практически все требования и пожелания заказчика.
2. Основные
задачи и определение
При обработке информации, связанной с изображением на мониторе, принято выделять три основных направления: распознавание образов, обработку изображений и машинную графику.
Основная задача распознавания
образов состоит в
Обработка изображений (IMAGE PROCESSING) рассматривает задачи в которых и входные и выходные данные являются изображениями. Например, передача изображения с устранением шумов и сжатием данных, переход от одного вида изображения к другому (от цветного к черно–белому) и т.д. Таким образом, под обработкой изображений понимают деятельность над изображениями (преобразование изображений). Задачей обработки изображений может быть как улучшение в зависимости от определенного критерия (реставрация, восстановление), так и специальное преобразование, кардинально изменяющее изображения.
При обработке изображений
Рисунок 1. Обработка изображений
Ограничимся работой только с цифровым изображением. Цифровые преобразования по цели преобразования можно разделить на два типа:
Компьютерная (машинная) графика (COMPUTER GRAPHICS) воспроизводит изображение в случае, когда исходной является информация неизобразительной природы. Например, визуализация экспериментальных данных в виде графиков, гистограмм или диаграмм, вывод информации на экран компьютерных игр, синтез сцен на тренажерах.
Компьютерная графика
в настоящее время
Конечным продуктом
Компьютерная графика – это наука, предметом изучения которой является создание, хранение и обработка моделей и их изображений с помощью ЭВМ, т.е. это раздел информатики, который занимается проблемами получения различных изображений (рисунков, чертежей, мультипликации) на компьютере.
В компьютерной графике рассматриваются следующие задачи:
Под компьютерной графикой обычно понимают автоматизацию процессов подготовки, преобразования, хранения и воспроизведения графической информации с помощью компьютера. Под графической информацией понимаются модели объектов и их изображения.
В случае, если пользователь может управлять характеристиками объектов, то говорят об интерактивной компьютерной графике, т.е. способность компьютерной системы создавать графику и вести диалог с человеком. В настоящее время почти любую программу можно считать системой интерактивной компьютерной графики.
Интерактивная компьютерная графика – это так же использование компьютеров для подготовки и воспроизведения изображений, но при этом пользователь имеет возможность оперативно вносить изменения в изображение непосредственно в процессе его воспроизведения, т.е. предполагается возможность работы с графикой в режиме диалога в реальном масштабе времени.
Интерактивная графика представляет
собой важный раздел компьютерной графики,
когда пользователь имеет возможность
динамически управлять
Исторически первыми интерактивными системами считаются системы автоматизированного проектирования (САПР), которые появились в 60-х годах. Они представляют собой значительный этап в эволюции компьютеров и программного обеспечения. В системе интерактивной компьютерной графики пользователь воспринимает на дисплее изображение, представляющее некоторый сложный объект, и может вносить изменения в описание (модель) объекта. Такими изменениями могут быть как ввод и редактирование отдельных элементов, так и задание числовых значений для любых параметров, а также иные операции по вводу информации на основе восприятия изображений.
Сейчас становятся все
более популярными
Работа с компьютерной
графикой – одно из самых популярных
направлений использования
Типичными для любой ГИС являются такие операции – ввод и редактирование объектов с учетом их расположения на поверхности Земли, формирование разнообразных цифровых моделей, запись в базы данных, выполнение разнообразных запросов к базам данных. Важной операцией является анализ с учетом пространственных, топологических отношений множества объектов, расположенных на некоторой территории.
Компьютерная графика насчитывает в своем развитии не более десятка лет, а ее коммерческим приложениям – и того меньше. Андриес ван Дам считается одним из отцов компьютерной графики, а его книги – фундаментальными учебниками по всему спектру технологий, положенных в основу машинной графики. Также в этой области известен Айвэн Сазерленд, чья докторская диссертация явилась теоретической основой машинной графики.
До недавнего времени экспериментирование по использованию возможностей интерактивной машинной графики было привилегией лишь небольшому количеству специалистов, в основном ученые и инженеры, занимающиеся вопросами автоматизации проектирования, анализа данных и математического моделирования. Теперь же исследование реальных и воображаемых миров через «призму» компьютеров стало доступно гораздо более широкому кругу людей.
Такое изменение ситуации
обусловлено несколькими
Следующая причина обусловлена влиянием, которое дисплеи оказывают на качество интерфейса – средства общения между человеком и машиной, – обеспечивая максимальные удобства для пользователя. Новые, удобные для пользователя системы построены в основном на подходе WYSIWYG (аббревиатура от английского выражения «What you see is what you get» – «Что видите, то и имеете»), в соответствии с которым изображение на экране должно быть как можно более похожим на то, которое в результате печатается.
Большинство традиционных приложений машинной графики являются двумерными. В последнее время отмечается возрастающий коммерческий интерес к трехмерным приложениям. Он вызван значительным прогрессом в решении двух взаимосвязанных проблем: моделирования трехмерных сцен и построения как можно более реалистичного изображения. Например, в имитаторах полета особое значение придается времени реакции на команды, вводимые пилотом и инструктором. Чтобы создавалась иллюзия плавного движения, имитатор должен порождать чрезвычайно реалистичную картину динамически изменяющегося «мира» с частотой как минимум 30 кадров в секунду. В противоположность этому изображения, применяемые в рекламе и индустрии развлечений, вычисляют автономно, нередко в течение часов, с целью достичь максимального реализма или произвести сильное впечатление.
Развитие компьютерной графики, особенно на ее начальных этапах, в первую очередь связано с развитием технических средств и в особенности дисплеев:
Произвольное сканирование луча. Дисплейная графика появилась, как попытка использовать электроннолучевые трубки (ЭЛТ) с произвольным сканированием луча для вывода изображения из ЭВМ. Как пишет Ньюмен "по–видимому, первой машиной, где ЭЛТ использовалась в качестве устройства вывода была ЭВМ Whirlwind–I (Ураган–I), изготовленная в 1950г. в Массачусетском технологическом институте. С этого эксперимента начался этап развития векторных дисплеев (дисплеев с произвольным сканированием луча, каллиграфических дисплеев). На профессиональном жаргоне вектором называется отрезок прямой. Отсюда и происходит название «векторный дисплей».
При перемещении луча по экрану в точке, на которую попал луч, возбуждается свечение люминофора экрана. Это свечение достаточно быстро прекращается при перемещении луча в другую позицию (обычное время послесвечения – менее 0.1 с). Поэтому, для того чтобы изображение было постоянно видимым, приходится его перевыдавать (регенерировать изображение) 50 или 25 раз в секунду. Необходимость перевыдачи изображения требует сохранения его описания в специально выделенной памяти, называемой памятью регенерации. Само описание изображения называется дисплейным файлом. Понятно, что такой дисплей требует достаточно быстрого процессора для обработки дисплейного файла и управления перемещением луча по экрану.
Обычно серийные векторные дисплеи успевали 50 раз в секунду строить только около 3000–4000 отрезков. При большем числе отрезков изображение начинает мерцать, так как отрезки, построенные в начале очередного цикла, полностью погасают к тому моменту, когда будут строиться последние.
Другим недостатком векторных дисплеев является малое число градаций по яркости (обычно 2–4). Были разработаны, но не нашли широкого применения двух–трехцветные ЭЛТ, также обеспечивавшие несколько градаций яркости.
В векторных дисплеях легко
стереть любой элемент
Текстовый диалог поддерживается с помощью алфавитно–цифровой клавиатуры. Косвенный графический диалог, как и во всех остальных дисплеях, осуществляется перемещением перекрестия (курсора) по экрану с помощью тех или иных средств управления перекрестием – координатных колес, управляющего рычага (джойстика), трекбола (шаровой рукоятки), планшета и т.д. Отличительной чертой векторных дисплеев является возможность непосредственного графического диалога, заключающаяся в простом указании с помощью светового пера объектов на экране (линий, символов и т.д.). Для этого достаточно с помощью фотодиода определить момент прорисовки и, следовательно, начала свечения люминофора) любой части требуемого элемента. Первые серийные векторные дисплеи за рубежом появились в конце 60–х годов.
Растровое сканирование луча. Прогресс в технологии микроэлектроники привел к тому, с середины 70–х годов подавляющее распространение получили дисплеи с растровым сканированием луча.
Запоминающие трубки. В конце 60–х годов появилась запоминающая ЭЛТ, которая способна достаточно длительное время (до часа) прямо на экране хранить построенное изображение. Следовательно, не обязательна память регенерации и не нужен быстрый процессор для выполнения регенерации изображения. Стирание на таком дисплее возможно только для всей картинки в целом. Сложность изображения практически не ограничена. Разрешение, достигнутое на дисплеях на запоминающей трубке, такое же, как и на векторных или выше – до 4096 точек.